Approximate algorithms for finding two edge-disjoint Hamiltonian cycles of minimal weight
Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 1, pp. 11-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2004_11_1_a1,
     author = {A. E. Baburin and E. Kh. Gimadi and N. M. Korkishko},
     title = {Approximate algorithms for finding two edge-disjoint {Hamiltonian} cycles of minimal weight},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2004_11_1_a1/}
}
TY  - JOUR
AU  - A. E. Baburin
AU  - E. Kh. Gimadi
AU  - N. M. Korkishko
TI  - Approximate algorithms for finding two edge-disjoint Hamiltonian cycles of minimal weight
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2004
SP  - 11
EP  - 25
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2004_11_1_a1/
LA  - ru
ID  - DA_2004_11_1_a1
ER  - 
%0 Journal Article
%A A. E. Baburin
%A E. Kh. Gimadi
%A N. M. Korkishko
%T Approximate algorithms for finding two edge-disjoint Hamiltonian cycles of minimal weight
%J Diskretnyj analiz i issledovanie operacij
%D 2004
%P 11-25
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2004_11_1_a1/
%G ru
%F DA_2004_11_1_a1
A. E. Baburin; E. Kh. Gimadi; N. M. Korkishko. Approximate algorithms for finding two edge-disjoint Hamiltonian cycles of minimal weight. Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/DA_2004_11_1_a1/

[1] Kostochka A. V., Serdyukov A. I., “Polinomialnye algoritmy s otsenkami 3/4 i 5/6 dlya zadachi kommivoyazhera na maksimum”, Upravlyaemye sistemy, Sb. nauch. tr., no. 26, In-t matematiki SO AN SSSR, Novosibirsk, 1985, 55–59 | MR

[2] Papadimitriu Kh., Staiglits K., Kombinatornaya optimizatsiya. Algoritmy i slozhnost, Mir, M., 1982 | MR

[3] Serdyukov A. I., “O nekotorykh ekstremalnykh obkhodakh v grafakh”, Upravlyaemye sistemy, Sb. nauch. tr., no. 17, In-t matematiki SO AN SSSR, Novosibirsk, 1984, 76–79 | MR

[4] Gabow H. N., “An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems”, Proc. of the 15th annual ACM symposium on theory of computing (Boston, 1983), ACM Press, New York, 1983, 448–456