Algorithms with improved estimates for accuracy for the set covering problem
Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2004_11_1_a0,
     author = {A. A. Ageev},
     title = {Algorithms with improved estimates for accuracy for the set covering problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2004_11_1_a0/}
}
TY  - JOUR
AU  - A. A. Ageev
TI  - Algorithms with improved estimates for accuracy for the set covering problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2004
SP  - 3
EP  - 10
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2004_11_1_a0/
LA  - ru
ID  - DA_2004_11_1_a0
ER  - 
%0 Journal Article
%A A. A. Ageev
%T Algorithms with improved estimates for accuracy for the set covering problem
%J Diskretnyj analiz i issledovanie operacij
%D 2004
%P 3-10
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2004_11_1_a0/
%G ru
%F DA_2004_11_1_a0
A. A. Ageev. Algorithms with improved estimates for accuracy for the set covering problem. Diskretnyj analiz i issledovanie operacij, Tome 11 (2004) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/DA_2004_11_1_a0/

[1] Ageev A. A., “O minimizatsii nekotorykh polinomov ot bulevykh peremennykh”, Upravlyaemye sistemy, Sb. nauch. tr., no. 21, Institut matematiki SO RAN SSSR, Novosibirsk, 1981, 3–5 | MR

[2] Ageev A. A., “O slozhnosti zadach minimizatsii polinomov ot bulevykh peremennykh”, Upravlyaemye sistemy, Sb. nauch. tr., no. 23, Institut matematiki SO RAN SSSR, Novosibirsk, 1983, 3–11 | MR

[3] Beresnev V. L., “Algoritmy minimizatsii polinomov ot bulevykh peremennykh”, Problemy kibernetiki, no. 36, Nauka, M., 1979, 225–246 | MR

[4] Bar-Yehuda R., Even S., “A linear-time approximation algorithm for the weighted vertex cover problem”, J. Algorithms, 2:2 (1981), 198–203 | DOI | MR | Zbl

[5] Chvatal V., “A greedy heuristic for the set covering problem”, Math. Oper. Res., 4:3 (1979), 233–235 | DOI | MR | Zbl

[6] Feige U., “A threshold of $\ln n$ for approximating set cover”, J. Assoc. Comput. Mach., 45:4 (1998), 634–652 | MR | Zbl

[7] Garey M. R., Johnson D. S., Computers and intractability. A guide to the theory of NP-completeness, W. H. Freeman and Co., San Francisco, 1979 ; Geri M., Dzholnston D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR | Zbl | MR

[8] Gaur D. R., Ibaraki T., Krishnamurti R., “Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem”, J. Algorithms, 43:1 (2002), 138–152 | DOI | MR | Zbl

[9] Hassin R., Megiddo M., “Approximation algorithms for hitting objects with straight lines”, Discrete Appl. Math., 30:1 (1991), 29–49 | DOI | MR

[10] Heller I., Hoffman A. J., “On unimodular matrices”, Pacific J. Math., 12:4 (1962), 1321–1327 | MR | Zbl

[11] Hochbaum D. S., “Approximation algorithms for the set covering and vertex cover problems”, SIAM J. Comp., 11:3 (1982), 555–556 | DOI | MR | Zbl

[12] Hoffman A. J., Kruskal J. B., “Integral boundary points of convex polyhedra”, Linear inequalities and related systems, Princeton University Press, Princeton, 1956, 223–246 | MR

[13] Nemhauser G., Wolsey L., A integer and combinatorial optimization, John Wiley and Sons, Inc., New York, 1988 | MR

[14] Srinivasan A., “Improved approximations of packing and covering problems”, Proc. of the 27th annual ACM symposium on theory of computing, ACM, New York, 1995, 268–276 | Zbl