Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2003_10_4_a2, author = {A. D. Korshunov}, title = {The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated {Boolean} functions). {I.} {The} case of even $n$ and $k=2$}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {31--69}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2003_10_4_a2/} }
TY - JOUR AU - A. D. Korshunov TI - The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$ JO - Diskretnyj analiz i issledovanie operacij PY - 2003 SP - 31 EP - 69 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2003_10_4_a2/ LA - ru ID - DA_2003_10_4_a2 ER -
%0 Journal Article %A A. D. Korshunov %T The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$ %J Diskretnyj analiz i issledovanie operacij %D 2003 %P 31-69 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2003_10_4_a2/ %G ru %F DA_2003_10_4_a2
A. D. Korshunov. The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$. Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 4, pp. 31-69. http://geodesic.mathdoc.fr/item/DA_2003_10_4_a2/