The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$
Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 4, pp. 31-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2003_10_4_a2,
     author = {A. D. Korshunov},
     title = {The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated {Boolean} functions). {I.} {The} case of even $n$ and $k=2$},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {31--69},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2003_10_4_a2/}
}
TY  - JOUR
AU  - A. D. Korshunov
TI  - The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2003
SP  - 31
EP  - 69
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2003_10_4_a2/
LA  - ru
ID  - DA_2003_10_4_a2
ER  - 
%0 Journal Article
%A A. D. Korshunov
%T The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$
%J Diskretnyj analiz i issledovanie operacij
%D 2003
%P 31-69
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2003_10_4_a2/
%G ru
%F DA_2003_10_4_a2
A. D. Korshunov. The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$. Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 4, pp. 31-69. http://geodesic.mathdoc.fr/item/DA_2003_10_4_a2/

[1] Korshunov A. D., “O chisle monotonnykh bulevykh funktsii”, Problemy kibernetiki, no. 38, Nauka, M., 1981, 5–104 | MR

[2] Korshunov A. D., “O moschnosti i strukture nekotorykh zamknutykh klassov Posta (semeistv podmnozhestv konechnogo mnozhestva)”, Modeli i metody optimizatsii, Tr. AN SSSR. Sib. otd-nie. Institut matematiki, 10, Nauka, Novosibirsk, 1988, 159–204 | MR

[3] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, Fizmatlit, M., 2000 | MR | Zbl

[4] Erdős P., Kleitman D. J., “Extremal problems among subsets of a set”, Discrete Math., 8:3 (1974), 281–294 ; Erdesh P., Spenser Dzh., Veroyatnostnye metody v kombinatorike, Mir, M., 1976 | DOI | MR | Zbl | MR

[5] Post E., The two-valued iterative systems of mathematical logic, Princeton Univ. Press, Princeton, 1941 | MR | Zbl