The use of alternating neighborhoods for an approximate solution of a resource-constrained scheduling problem
Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 2, pp. 29-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2003_10_2_a2,
     author = {Yu. A. Kochetov and A. A. Stolyar},
     title = {The use of alternating neighborhoods for an approximate solution of a resource-constrained scheduling problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {29--55},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2003_10_2_a2/}
}
TY  - JOUR
AU  - Yu. A. Kochetov
AU  - A. A. Stolyar
TI  - The use of alternating neighborhoods for an approximate solution of a resource-constrained scheduling problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2003
SP  - 29
EP  - 55
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2003_10_2_a2/
LA  - ru
ID  - DA_2003_10_2_a2
ER  - 
%0 Journal Article
%A Yu. A. Kochetov
%A A. A. Stolyar
%T The use of alternating neighborhoods for an approximate solution of a resource-constrained scheduling problem
%J Diskretnyj analiz i issledovanie operacij
%D 2003
%P 29-55
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2003_10_2_a2/
%G ru
%F DA_2003_10_2_a2
Yu. A. Kochetov; A. A. Stolyar. The use of alternating neighborhoods for an approximate solution of a resource-constrained scheduling problem. Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 2, pp. 29-55. http://geodesic.mathdoc.fr/item/DA_2003_10_2_a2/

[1] Gimadi E. Kh., Zalyubovskii V. V., Sevastyanov S. V., “Polinomialnaya razreshimost zadach kalendarnogo planirovaniya s ogranichennymi resursami i direktivnymi srokami”, Diskret. analiz i issled. operatsii. Ser. 2, 7:1 (2000), 9–34 | MR | Zbl

[2] Goncharov E. N., Kochetov Yu. A., “Povedenie veroyatnostnykh zhadnykh algoritmov dlya mnogostadiinoi zadachi razmescheniya”, Diskret. analiz i issled. operatsii. Ser. 2, 6:1 (1999), 12–32 | MR | Zbl

[3] Goncharov E. N., Kochetov Yu. A., “Veroyatnostnyi poisk s zapretami dlya diskretnykh zadach bezuslovnoi optimizatsii”, Diskret. analiz i issled. operatsii. Ser. 2, 9:2 (2002), 13–20 | MR

[4] Ahuja R. K., James O. E., Orlin B., Punnen A. P., “A survey of very largescale neighborhood search techniques”, Discrete Appl. Math., 123:1–3 (2002), 75–102 | DOI | MR | Zbl

[5] Alvarez-Valdés R., Tamarit J. M., “Heuristic algorithms for resourceconstrained project scheduling: A review and empirical analysis”, Advances in project scheduling, Elsevier, Amsterdam, 1989, 113–134 | MR

[6] Baar T., Brucker P., Knust S., Tabu-search algorithms for the resource-constrained project scheduling problem, Working Paper, Universität Osnab"uck, 1997 | Zbl

[7] Battiti R., Protasi M., “Reactive local search for the maximum clique problem”, Algorithmica, 29:4 (2001), 610–637 | DOI | MR | Zbl

[8] Bla.{z}ewich J., Lenstra J. K., Rinnooy Kan A. H. G., “Scheduling subject to resource constraints: Classification and complexity”, Discrete Appl. Math., 5:1 (1983), 11–24 | DOI | MR | Zbl

[9] Boctor F., “Some efficient multi-heuristic procedures for resource-constrained project scheduling”, European J. Oper. Res., 49:1 (1990), 3–13 | DOI

[10] Bouleimen K., Lecocq H., A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem, Techn. Rep. Université de Li`ege, 1998

[11] Brucker P., Knust S., Schoo A., Thiele O., “A branch and bound algorithm for the resource-constrained project scheduling problem”, European J. Oper. Res., 107:2 (1998), 272–288 | DOI | Zbl

[12] Elmaghraby S., Activity networks: Project planning and control by network models, John Wiley, New York, 1977 | Zbl

[13] Fleszar K., Hindi K., “Solving the resource-constrained project scheduling problem by a variable neighborhood search”, European J. Oper. Res. (to appear)

[14] Glover F., Laguna M., Tabu search, Kluwer Acad. Publ., Boston, 1997 | MR

[15] Hansen P., Mladenović N., “Developments of variable neighborhood search”, Essays and surveys of metaheuristics, Kluwer Acad. Publ., Boston, 2002, 415–440 | MR

[16] Hartmann S., “A competitive genetic algorithm for resource-constrained project scheduling”, Naval Res. Logist, 45:7 (1998), 733–750 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Hartmann S., Self-adapting genetic algorithm with an application to project scheduling, Techn. Rep. University of Kiel, 1999

[18] Kolisch R., “Efficient priority rules for the resource-constrained project scheduling problem”, J. Oper. Management, 14:3 (1996), 179–192 | DOI

[19] Kolisch R., “Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation”, European J. Oper. Res., 90:2 (1996), 320–333 | DOI | Zbl

[20] Kolisch R., Drexl A., “Adaptive search for solving hard project scheduling problems”, Naval Res. Logist, 43:1 (1996), 23–40 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[21] Kolisch R., Schwindt C., Sprecher A., “Benchmark instances for project scheduling problems”, Project scheduling. recent models, algorithms and applications, Kluwer Acad. Publ., Boston, 1999, 197–212

[22] Martello S., Toth P., Knapsack problems. Algorithms and computer implementations, John Wiley Sons, Chichester, 1990 | MR | Zbl

[23] Merkle D., Middendorf M., Schmeck H., “Ant colony optimization for resource-constrained project scheduling”, Proc. of the Genetic and Evolutionary Computation Conference, 2000, 893–900

[24] Mingozzi A., Maniezzo V., Ricciardelli S., Bianco L., “An exact algorithm for resource-constrained project scheduling problem based on a new mathematical formulation”, Management Sci., 44:5 (1998), 714–729 | DOI | Zbl

[25] Möhring R. H., Schulz A. S., Stork F., Uetz M., “Solving project scheduling problems by minimum cut computations”, Manag. Sci., 49:3 (2003), 330–350 | DOI

[26] Nonobe K., Ibaraki T., Formulation and tabu search algorithm for the resource constrained project scheduling problem (RCPSP), Techn. Rep. 99010, University of Kioto, 1999

[27] Özdamar L., Ulusoy G., “An iterative local constraint based analysis for solving the resource-constrained project scheduling problem”, J. Oper. Management, 14:3 (1996), 193–208 | DOI

[28] Palpant M., Artigues Ch., Michelon Ph., LIA Techn. Rep. 252, Université d'Avignon, 2001

[29] Ribeiro C., Hansen P., Essays and surveys of metaheuristics, Kluwer Acad. Publ., Boston, 2002 | MR

[30] Sampson S. E., Weiss E. N., “Local search techniques for the generalized resource constrained project scheduling problem”, Naval Res. Logist., 40:5 (1993), 665–675 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[31] Thomas P., Salhi S., “An investigation into the relationship of heuristic performance with network-resource characteristics”, J. Oper. Res. Society, 48:1 (1997), 34–43 | Zbl

[32] Thomas P., Salhi S., “A tabu search approach for the resource constrained project scheduling problem”, J. Heurist, 4:2 (1998), 123–139 | DOI | Zbl

[33] Valls V., Ballestín F., Quintanilla S., “Resource-constrained project scheduling: a critical activity reordering heuristic”, Proc. of the 7th Intern. Workshop on Project Management and Scheduling, Extended Abstracts (Germany, April 17–19, 2000), 2000, 282–283 | MR

[34] Valls V., Ballestín F., Quintanilla S., A population-based approach to the resource-constrained project scheduling problem, Techn. Rep. 10-2001, University of Valencia, 2001

[35] Weglarz J., Project scheduling. Recent models, algorithms and applications, Kluwer Acad. Publ., Boston, 1999

[36] Yannakakis M., “Computational complexity”, Local search in combinatorial optimization, John Wiley Sons, Chichester, 1997, 19–55 | MR