Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2003_10_1_a0, author = {N. Yu. Zolotykh}, title = {On the complexity of the solution of a class of integer linear programming problems}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--10}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2003_10_1_a0/} }
TY - JOUR AU - N. Yu. Zolotykh TI - On the complexity of the solution of a class of integer linear programming problems JO - Diskretnyj analiz i issledovanie operacij PY - 2003 SP - 3 EP - 10 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2003_10_1_a0/ LA - ru ID - DA_2003_10_1_a0 ER -
N. Yu. Zolotykh. On the complexity of the solution of a class of integer linear programming problems. Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/DA_2003_10_1_a0/
[1] Veselov S. I., Nizhnyaya otsenka srednego chisla neprivodimykh i krainikh tochek v dvukh zadachakh diskretnogo programmirovaniya, Dep. v VINITI No 2 V619-84, M., 1984
[2] Zolotykh N. Yu., “O porogovykh i blizkikh k nim funktsiyakh, opredelennykh v tselochislennykh tochkakh politopa”, Diskret. analiz i issled. operatsii. Ser. 1, 5:2 (1998), 40–54 | MR | Zbl
[3] Zolotykh N. Yu., “Porogovye funktsii, zavisyaschie ot dvukh peremennykh: slozhnost rasshifrovki i moschnost razreshayuschego mnozhestva”, Materialy Chetvertoi molodezhnoi nauchnoi shkoly po diskretnoi matematike i ee prilozheniyam (Moskva, 18–23 sentyabrya 2000 g.), Izd-vo mekh.-mat. fak. MGU, M., 2000, 48–54
[4] Zolotykh N. Yu., Shevchenko V. N., “Rasshifrovka porogovykh funktsii $k$-znachnoi logiki”, Diskret. analiz i issled. operatsii, 2:3 (1995), 18–23 | MR
[5] Zolotykh N. Yu., Shevchenko V. N., “O nizhnei otsenke slozhnosti rasshifrovki porogovykh funktsii $k$-znachnoi logiki”, Zhurn. vychisl. matematiki i mat. fiziki, 39:2 (1999), 346–352 | MR | Zbl
[6] Smirnov A. N., “O slozhnosti odnogo klassa zadach buleva programmirovaniya”, Soobscheniya VTs AN SSSR, 1978, no. 10, VTs AN SSSR, M.
[7] Sokolov N. A., “Orakulnaya slozhnost poryadkovoi optimizatsii na bulevom kube”, Kombinatornye modeli i metody, no. 2, VTs RAN, M., 1997, 85–90 | MR
[8] Shevchenko V. N., “O rasshifrovke porogovoi funktsii mnogoznachnoi logiki”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, Gork. gos. un-t, Gorkii, 1987, 155–163
[9] Shevchenko V. N., Kachestvennye voprosy tselochislennogo programmirovaniya, Fizmatlit, M., 1995 | MR | Zbl
[10] Hausmann D., Kannan R., Korte B., “Exponential lower bounds on a class of knapsack algorithms”, Math. Oper. Res., 6:2 (1981), 225–232 | DOI | MR | Zbl
[11] Hausmann D., Korte B., “Lower bounds on the worst-case complexity of some oracle algorithms”, Discrete Math., 24:3 (1978), 261–272 | DOI | MR
[12] Hegedus T., “Geometrical concept learning and convex polytopes”, Proc. of the 7th annual ACM conf. on computational learning theory (COLT'94), ACM Press, N.Y., 1994, 228–236 | MR
[13] Hegedus T., “Generalized teaching dimensions and the query complexity of learning”, Proc. of the 8th annual ACM conf. on computational learning theory (COLT'95), ACM Press, N.Y., 1995, 108–117