On the complexity of the solution of a class of integer linear programming problems
Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2003_10_1_a0,
     author = {N. Yu. Zolotykh},
     title = {On the complexity of the solution of a class of integer linear programming problems},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2003_10_1_a0/}
}
TY  - JOUR
AU  - N. Yu. Zolotykh
TI  - On the complexity of the solution of a class of integer linear programming problems
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2003
SP  - 3
EP  - 10
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2003_10_1_a0/
LA  - ru
ID  - DA_2003_10_1_a0
ER  - 
%0 Journal Article
%A N. Yu. Zolotykh
%T On the complexity of the solution of a class of integer linear programming problems
%J Diskretnyj analiz i issledovanie operacij
%D 2003
%P 3-10
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2003_10_1_a0/
%G ru
%F DA_2003_10_1_a0
N. Yu. Zolotykh. On the complexity of the solution of a class of integer linear programming problems. Diskretnyj analiz i issledovanie operacij, Tome 10 (2003) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/DA_2003_10_1_a0/

[1] Veselov S. I., Nizhnyaya otsenka srednego chisla neprivodimykh i krainikh tochek v dvukh zadachakh diskretnogo programmirovaniya, Dep. v VINITI No 2 V619-84, M., 1984

[2] Zolotykh N. Yu., “O porogovykh i blizkikh k nim funktsiyakh, opredelennykh v tselochislennykh tochkakh politopa”, Diskret. analiz i issled. operatsii. Ser. 1, 5:2 (1998), 40–54 | MR | Zbl

[3] Zolotykh N. Yu., “Porogovye funktsii, zavisyaschie ot dvukh peremennykh: slozhnost rasshifrovki i moschnost razreshayuschego mnozhestva”, Materialy Chetvertoi molodezhnoi nauchnoi shkoly po diskretnoi matematike i ee prilozheniyam (Moskva, 18–23 sentyabrya 2000 g.), Izd-vo mekh.-mat. fak. MGU, M., 2000, 48–54

[4] Zolotykh N. Yu., Shevchenko V. N., “Rasshifrovka porogovykh funktsii $k$-znachnoi logiki”, Diskret. analiz i issled. operatsii, 2:3 (1995), 18–23 | MR

[5] Zolotykh N. Yu., Shevchenko V. N., “O nizhnei otsenke slozhnosti rasshifrovki porogovykh funktsii $k$-znachnoi logiki”, Zhurn. vychisl. matematiki i mat. fiziki, 39:2 (1999), 346–352 | MR | Zbl

[6] Smirnov A. N., “O slozhnosti odnogo klassa zadach buleva programmirovaniya”, Soobscheniya VTs AN SSSR, 1978, no. 10, VTs AN SSSR, M.

[7] Sokolov N. A., “Orakulnaya slozhnost poryadkovoi optimizatsii na bulevom kube”, Kombinatornye modeli i metody, no. 2, VTs RAN, M., 1997, 85–90 | MR

[8] Shevchenko V. N., “O rasshifrovke porogovoi funktsii mnogoznachnoi logiki”, Kombinatorno-algebraicheskie metody v prikladnoi matematike, Gork. gos. un-t, Gorkii, 1987, 155–163

[9] Shevchenko V. N., Kachestvennye voprosy tselochislennogo programmirovaniya, Fizmatlit, M., 1995 | MR | Zbl

[10] Hausmann D., Kannan R., Korte B., “Exponential lower bounds on a class of knapsack algorithms”, Math. Oper. Res., 6:2 (1981), 225–232 | DOI | MR | Zbl

[11] Hausmann D., Korte B., “Lower bounds on the worst-case complexity of some oracle algorithms”, Discrete Math., 24:3 (1978), 261–272 | DOI | MR

[12] Hegedus T., “Geometrical concept learning and convex polytopes”, Proc. of the 7th annual ACM conf. on computational learning theory (COLT'94), ACM Press, N.Y., 1994, 228–236 | MR

[13] Hegedus T., “Generalized teaching dimensions and the query complexity of learning”, Proc. of the 8th annual ACM conf. on computational learning theory (COLT'95), ACM Press, N.Y., 1995, 108–117