On invariant classes of functions that are repetition-free expressible by formulas
Diskretnyj analiz i issledovanie operacij, Tome 9 (2002) no. 4, pp. 57-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2002_9_4_a5,
     author = {D. Yu. Cherukhin},
     title = {On invariant classes of functions that are repetition-free expressible by formulas},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {57--74},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2002_9_4_a5/}
}
TY  - JOUR
AU  - D. Yu. Cherukhin
TI  - On invariant classes of functions that are repetition-free expressible by formulas
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2002
SP  - 57
EP  - 74
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2002_9_4_a5/
LA  - ru
ID  - DA_2002_9_4_a5
ER  - 
%0 Journal Article
%A D. Yu. Cherukhin
%T On invariant classes of functions that are repetition-free expressible by formulas
%J Diskretnyj analiz i issledovanie operacij
%D 2002
%P 57-74
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2002_9_4_a5/
%G ru
%F DA_2002_9_4_a5
D. Yu. Cherukhin. On invariant classes of functions that are repetition-free expressible by formulas. Diskretnyj analiz i issledovanie operacij, Tome 9 (2002) no. 4, pp. 57-74. http://geodesic.mathdoc.fr/item/DA_2002_9_4_a5/

[1] Kuznetsov A. V., “O bespovtornykh kontaktnykh skhemakh i bespovtornykh superpozitsiyakh funktsii algebry logiki”, Sbornik statei po matematicheskoi logike i ee prilozheniyam k nekotorym voprosam kibernetiki, Tr. Mat. in-ta im. V. A. Steklova, 51, Izd-vo AN SSSR, M., 1958, 186–225

[2] Stetsenko V. A., “O predplokhikh bazisakh v $P_2$”, Mat. voprosy kibernetiki, no. 4, Nauka, M., 1992, 139–177 | MR

[3] Yablonskii S. V., “Ob algoritmicheskikh trudnostyakh sinteza minimalnykh kontaktnykh skhem”, Problemy kibernetiki, no. 2, Fizmatgiz, M., 1959, 75–121