Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2002_9_4_a1, author = {A. E. Baburin and E. Kh. Gimadi}, title = {On the asymptotic accuracy of an algorithm for solving the traveling salesman problem for a maximum in a {Euclidean} space}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {23--32}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2002_9_4_a1/} }
TY - JOUR AU - A. E. Baburin AU - E. Kh. Gimadi TI - On the asymptotic accuracy of an algorithm for solving the traveling salesman problem for a maximum in a Euclidean space JO - Diskretnyj analiz i issledovanie operacij PY - 2002 SP - 23 EP - 32 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2002_9_4_a1/ LA - ru ID - DA_2002_9_4_a1 ER -
%0 Journal Article %A A. E. Baburin %A E. Kh. Gimadi %T On the asymptotic accuracy of an algorithm for solving the traveling salesman problem for a maximum in a Euclidean space %J Diskretnyj analiz i issledovanie operacij %D 2002 %P 23-32 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2002_9_4_a1/ %G ru %F DA_2002_9_4_a1
A. E. Baburin; E. Kh. Gimadi. On the asymptotic accuracy of an algorithm for solving the traveling salesman problem for a maximum in a Euclidean space. Diskretnyj analiz i issledovanie operacij, Tome 9 (2002) no. 4, pp. 23-32. http://geodesic.mathdoc.fr/item/DA_2002_9_4_a1/
[1] Gimadi E. X., “Novaya versiya asimptoticheski tochnogo algoritma resheniya evklidovoi zadachi kommivoyazhera na maksimum”, Metody optimizatsii i ikh prilozheniya, Trudy XII Baikalskoi mezhdunar. konf. (Irkutsk, 24 iyunya–1 iyulya 2001 g.), In-t dinamiki sistem i teorii upravleniya SO RAN, Irkutsk, 2001, 117–124
[2] Serdyukov A. I., “Asimptoticheski tochnyi algoritm dlya zadachi kommivoyazhera na maksimum v evklidovom prostranstve”, Metody tselochislennoi optimizatsii (Upravlyaemye sistemy), Sb. nauch. tr., no. 27, In-t matematiki SO AN SSSR, Novosibirsk, 1987, 79–87 | MR
[3] Gutin G., Punnen A. P. (eds.), The traveling salesman problem and its variations, Kluwer Acad. Publ., Dordrecht, 2002 | MR
[4] Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G.,Shmoys D. B. (eds.), The traveling salesman problem: A guided tour of combinatorial optimization, John Wiley Sons, Ltd., Chichester, 1985 | MR | Zbl