Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra
Diskretnyj analiz i issledovanie operacij, Tome 9 (2002) no. 3, pp. 29-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2002_9_3_a1,
     author = {O. V. Borodin},
     title = {Strengthening {Lebesgue's} theorem on the structure of the minor faces in convex polyhedra},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2002_9_3_a1/}
}
TY  - JOUR
AU  - O. V. Borodin
TI  - Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2002
SP  - 29
EP  - 39
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2002_9_3_a1/
LA  - ru
ID  - DA_2002_9_3_a1
ER  - 
%0 Journal Article
%A O. V. Borodin
%T Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra
%J Diskretnyj analiz i issledovanie operacij
%D 2002
%P 29-39
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2002_9_3_a1/
%G ru
%F DA_2002_9_3_a1
O. V. Borodin. Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra. Diskretnyj analiz i issledovanie operacij, Tome 9 (2002) no. 3, pp. 29-39. http://geodesic.mathdoc.fr/item/DA_2002_9_3_a1/

[1] Avgustinovich S. V., Borodin O. V., “Okrestnosti reber v normalnykh kartakh”, Diskret. analiz i issled. operatsii, 2:3 (1995), 3–9 | MR

[2] Borodin O. V., “Reshenie zadach Kotsiga i Gryunbauma ob otdelimosti tsikla v ploskom grafe”, Mat. zametki, 46:5 (1989), 9–12 | MR

[3] Borodin O. V., “Minimalnyi ves grani v ploskikh triangulyatsiyakh bez 4-vershin”, Mat. zametki, 51:1 (1992), 16–19 | MR | Zbl

[4] Borodin O. V., Stroenie i raskraska ploskikh grafov, Dis. $\dots$ d-ra fiz.-mat. nauk, Novosibirsk, 1994

[5] Borodin O. V., “Cyclic degree and cyclic coloring of 3-polytopes”, J. Graph Theory, 23:3 (1996), 225–231 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] Borodin O. V., “Triangulated 3-polytopes without faces of low weight”, Discrete Math., 186:1–3 (1998), 281–286 | DOI | MR

[7] Borodin O. V., Woodall D. R., “Cyclic degrees of 3-polytopes”, Graphs and Combinatorics, 15:3 (1999), 267–277 | DOI | MR | Zbl

[8] Horňák M., Jendrol' S., “Unavoidable sets of face types for planar maps”, Discus. Math. Graph Theory, 16:2 (1996), 123–142 | MR

[9] Kotzig A., “Contribution to the theory of Eulerian polyhedra”, Mat.-Fyz. Casopis Sloven. Akad., 5 (1955), 101–103 | MR

[10] Kotzig A., “From the theory of Eulerian polyhedra”, Mat.-Fyz. Casopis Sloven. Akad., 13 (1963), 20–34 | MR

[11] Kotzig A., “Extremal polyhedral graphs”, Proc. Second Intern. Conf. on Combin. Math. (New York, 1978), New York Akad. of Sci., New York, 1979, 569–570

[12] Lebesgue H., “Quelques conséquences simples de la formule d'Euler”, J. Math. Pures Appl., 9 (1940), 27–43 | MR | Zbl

[13] Plummer M. D., Toft B., “Cyclic coloration of 3-polytopes”, J. Graph Theory, 11:4 (1987), 507–515 | DOI | MR | Zbl

[14] Steinitz E., “Polyheder und Raumeinteilungen”, Enzykl. Math. Wiss., 3AB:12 (1922), 1–139, (Geometrie)