Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2002_9_2_a0, author = {N. I. Glebov}, title = {On conditions for the solvability of optimization problems by a greedy algorithm}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--12}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2002_9_2_a0/} }
N. I. Glebov. On conditions for the solvability of optimization problems by a greedy algorithm. Diskretnyj analiz i issledovanie operacij, Tome 9 (2002) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/DA_2002_9_2_a0/
[1] Glebov N. I., “Ob odnom klasse zadach vypuklogo tselochislennogo programmirovaniya”, Upravlyaemye sistemy, Sb. nauch. tr., no. 11, In-t matematiki SO AN SSSR, Novosibirsk, 1973, 38–42
[2] Glebov N. I., “O primenimosti metoda pokoordinatnogo spuska k nekotorym zadacham vypuklogo tselochislennogo programmirovaniya”, Upravlyaemye sistemy, Sb. nauch. tr., no. 17, In-t matematiki SO AN SSSR, Novosibirsk, 1978, 52–59 | MR
[3] Glebov N. I., “K opisaniyu odnogo klassa zadach, razreshimykh algoritmom pokoordinatnogo pod'ema”, Diskret. analiz i issled. operatsii. Ser. 1, 8:3 (2001), 15–25 | MR | Zbl
[4] Glebov N. I., Shenmaier V. V., “Zhadnyi algoritm v zadache o dlinneishem puti”, Materialy Mezhdunar. konf. “Problemy optimizatsii i ekonomicheskie prilozheniya”, Omsk, 1997, 48
[5] Glebov N. I., Shenmaier V. V., “O primenimosti algoritma pokoordinatnogo pod'ema k zadacham tselochislennogo programmirovaniya”, Diskret. analiz i issled. operatsii. Ser. 1, 7:4 (2000), 38–47 | MR | Zbl
[6] Kolmychevskaya N., “Nekotorye obobscheniya algoritma pokoordinatnogo spuska dlya matroida”, Upravlyaemye sistemy, Sb. nauch. tr., no. 21, In-t matematiki SO AN SSSR, Novosibirsk, 1981, 13–17 | MR
[7] Ovchinnikov V. G., “Ob odnoi zadache tselochislennogo programmirovaniya”, Kibernetika, 1976, no. 1, 131–135 | MR | Zbl
[8] Shenmaier V. V., “Maksimizatsiya lineinoi tselevoi funktsii s pomoschyu zhadnogo algoritma”, Diskret. analiz i issled. operatsii. Ser. 1, 6:4 (1999), 104–120 | MR
[9] Bixby R. E., Cunningham W. H., “Matroid optimization and algorithms”, Handbook of combinatorics, v. 1, Elsevier, Amsterdam, 1995, 551–609 | MR | Zbl
[10] Bjorner A., “On matroids, groups, and exchange languages”, Matroid Theory, Colloq. Math. Soc. János Bolyai, 40, North Holland, Amsterdam, New York, 1985, 25–60 | MR
[11] Boruvka O., “On a minimal problem”, Práce Moravské Přidovědecké Společnosti (Acta Societatis Scientiarium Moravicae), 3 (1926), 37–58 | Zbl
[12] Edmonds J., “Submodular functions, matroids, and certain polyhedra”, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, 69–87 | MR
[13] Edmonds J., “Matroids and the greedy algorithm”, Math. Programming, 1:2 (1971), 127–136 | DOI | MR | Zbl
[14] Faigle U., Submodular combinatorial structures, Habilitationsschrift Universitat Bonn, 1985
[15] Goecke O., “A greedy algorithm for hereditary set systems and a generalization of the Rado–Edmonds characterization of matroids”, Discrete Appl. Math., 20:1 (1988), 39–49 | DOI | MR | Zbl
[16] Goecke O., Korte V., Lovasz L., “Examples and algorithmic properties of greedoids”, Combinatorial optimization, Lecture Notes in Math., 1403, Springer, Berlin, 1989, 113–161 | MR
[17] Goetchel R., “Linear objective functions on certain classes of greedoids”, Discrete Appl. Math., 14:1 (1986), 11–16 | DOI | MR
[18] Korte B., Lovasz L., “Mathematical structures underlying greedy algorithm”, Fundamentals of computation theory, Lecture Notes in Comput. Sci., 117, Springer, Berlin, 1981, 205–209 | MR
[19] Korte B., Lovasz L., “Greedoids – a structural framework for the greedy algorithm”, Progress in combinatorial optimization (Waterloo, 1982), Acad. Press, Toronto, Ont., 1984, 221–243 | MR
[20] Korte B., Lovasz L., “Greedoids and linear objective functions”, SIAM J. Algebraic and Discrete Math., 5:2 (1984), 229–238 | DOI | MR | Zbl
[21] Korte B., Lovasz L., Schrader R., Greedoids. Algorithms and Combinatorics, Springer-Verl., Berlin, 1991 | MR
[22] Kruskal J. B., “On the shortest spanning subtree of a graph and the travelling salesman problem”, Proc. Amer. Math. Soc., 7:1 (1956), 48–50 | DOI | MR | Zbl
[23] Prim R. C., “Shortest connection networks and some generalizations”, Bell System Techn. J., 36:6 (1957), 1389–1401; Prim R. K., “Kratchaishie svyazyvayuschie seti i nekotorye obobscheniya”, Kiberneticheskii sbornik, no. 2, Mir, M., 1961, 95–107
[24] Rado R., “Note on independence functions”, Proc. London Math. Soc., 7:3 (1957), 300–320 | DOI | MR | Zbl