On the complexity of realization of powers of Boolean functions by formulas
Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 103-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the operation of the repetition-free product of Boolean functions and the operation generated by it of raising a Boolean function to a power. The powers of a Boolean function were considered by B. A. Subbotovskii (first in 1963) and the author in the solution of the problem of the comparison of Boolean bases. In the present paper we give a criterion that allows us to establish whether a sequence of powers of a function $f$ can be realized by formulas in a basis $B$ with linear or nonlinear complexity.
@article{DA_2001_8_4_a6,
     author = {D. Yu. Cherukhin},
     title = {On the complexity of realization of powers of {Boolean} functions by formulas},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {103--111},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2001_8_4_a6/}
}
TY  - JOUR
AU  - D. Yu. Cherukhin
TI  - On the complexity of realization of powers of Boolean functions by formulas
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2001
SP  - 103
EP  - 111
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2001_8_4_a6/
LA  - ru
ID  - DA_2001_8_4_a6
ER  - 
%0 Journal Article
%A D. Yu. Cherukhin
%T On the complexity of realization of powers of Boolean functions by formulas
%J Diskretnyj analiz i issledovanie operacij
%D 2001
%P 103-111
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2001_8_4_a6/
%G ru
%F DA_2001_8_4_a6
D. Yu. Cherukhin. On the complexity of realization of powers of Boolean functions by formulas. Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 103-111. http://geodesic.mathdoc.fr/item/DA_2001_8_4_a6/