For what~$k$ in almost every $n$-vertex graph do there exist all nonisomorphic $k$-vertex subgraphs?
Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 54-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DA_2001_8_4_a3,
     author = {A. D. Korshunov},
     title = {For what~$k$ in almost every $n$-vertex graph do there exist all nonisomorphic $k$-vertex subgraphs?},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {54--67},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2001_8_4_a3/}
}
TY  - JOUR
AU  - A. D. Korshunov
TI  - For what~$k$ in almost every $n$-vertex graph do there exist all nonisomorphic $k$-vertex subgraphs?
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2001
SP  - 54
EP  - 67
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2001_8_4_a3/
LA  - ru
ID  - DA_2001_8_4_a3
ER  - 
%0 Journal Article
%A A. D. Korshunov
%T For what~$k$ in almost every $n$-vertex graph do there exist all nonisomorphic $k$-vertex subgraphs?
%J Diskretnyj analiz i issledovanie operacij
%D 2001
%P 54-67
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2001_8_4_a3/
%G ru
%F DA_2001_8_4_a3
A. D. Korshunov. For what~$k$ in almost every $n$-vertex graph do there exist all nonisomorphic $k$-vertex subgraphs?. Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 54-67. http://geodesic.mathdoc.fr/item/DA_2001_8_4_a3/