For what~$k$ in almost every $n$-vertex graph do there exist all nonisomorphic $k$-vertex subgraphs?
Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 54-67
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2001_8_4_a3,
author = {A. D. Korshunov},
title = {For what~$k$ in almost every $n$-vertex graph do there exist all nonisomorphic $k$-vertex subgraphs?},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {54--67},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2001_8_4_a3/}
}
TY - JOUR AU - A. D. Korshunov TI - For what~$k$ in almost every $n$-vertex graph do there exist all nonisomorphic $k$-vertex subgraphs? JO - Diskretnyj analiz i issledovanie operacij PY - 2001 SP - 54 EP - 67 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2001_8_4_a3/ LA - ru ID - DA_2001_8_4_a3 ER -
A. D. Korshunov. For what~$k$ in almost every $n$-vertex graph do there exist all nonisomorphic $k$-vertex subgraphs?. Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 54-67. http://geodesic.mathdoc.fr/item/DA_2001_8_4_a3/