Perfect codes of complete rank with kernels of large dimensions
Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct perfect codes of all admissible lengths $n>20^{10}-1$ of complete rank with kernels of all possible dimensions $K$ from $(n-1)/2$ to $U(n)$, which is the maximum possible. For every $k\in \{(n-1)/2,\dots,U(n)-2\}$, we construct such codes of length $n,31\leqslant n\leqslant 2^{10}-1$.
@article{DA_2001_8_4_a0,
     author = {S. V. Avgustinovich and F. I. Solov'eva and O. Heden},
     title = {Perfect codes of complete rank with kernels of large dimensions},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2001_8_4_a0/}
}
TY  - JOUR
AU  - S. V. Avgustinovich
AU  - F. I. Solov'eva
AU  - O. Heden
TI  - Perfect codes of complete rank with kernels of large dimensions
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2001
SP  - 3
EP  - 8
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2001_8_4_a0/
LA  - ru
ID  - DA_2001_8_4_a0
ER  - 
%0 Journal Article
%A S. V. Avgustinovich
%A F. I. Solov'eva
%A O. Heden
%T Perfect codes of complete rank with kernels of large dimensions
%J Diskretnyj analiz i issledovanie operacij
%D 2001
%P 3-8
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2001_8_4_a0/
%G ru
%F DA_2001_8_4_a0
S. V. Avgustinovich; F. I. Solov'eva; O. Heden. Perfect codes of complete rank with kernels of large dimensions. Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 3-8. http://geodesic.mathdoc.fr/item/DA_2001_8_4_a0/