Perfect codes of complete rank with kernels of large dimensions
Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct perfect codes of all admissible lengths $n>20^{10}-1$ of complete rank with kernels of all possible dimensions $K$ from $(n-1)/2$ to $U(n)$, which is the maximum possible. For every $k\in \{(n-1)/2,\dots,U(n)-2\}$, we construct such codes of length $n,31\leqslant n\leqslant 2^{10}-1$.
@article{DA_2001_8_4_a0,
author = {S. V. Avgustinovich and F. I. Solov'eva and O. Heden},
title = {Perfect codes of complete rank with kernels of large dimensions},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {3--8},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2001_8_4_a0/}
}
TY - JOUR AU - S. V. Avgustinovich AU - F. I. Solov'eva AU - O. Heden TI - Perfect codes of complete rank with kernels of large dimensions JO - Diskretnyj analiz i issledovanie operacij PY - 2001 SP - 3 EP - 8 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2001_8_4_a0/ LA - ru ID - DA_2001_8_4_a0 ER -
S. V. Avgustinovich; F. I. Solov'eva; O. Heden. Perfect codes of complete rank with kernels of large dimensions. Diskretnyj analiz i issledovanie operacij, Tome 8 (2001) no. 4, pp. 3-8. http://geodesic.mathdoc.fr/item/DA_2001_8_4_a0/