New Lower Bounds for Cap Sets
Discrete analysis (2023) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

A cap set is a subset of $\mathbb{F}_3^n$ with no solutions to $x+y+z=0$ other than when $x=y=z$. In this paper, we provide a new lower bound on the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough $n$, there is always a cap set in $\mathbb{F}_3^n$ of size at least $2.218^n$.
Publié le :
@article{DAS_2023_a2,
     author = {Fred Tyrrell},
     title = {New {Lower} {Bounds} for {Cap} {Sets}},
     journal = {Discrete analysis},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2023_a2/}
}
TY  - JOUR
AU  - Fred Tyrrell
TI  - New Lower Bounds for Cap Sets
JO  - Discrete analysis
PY  - 2023
UR  - http://geodesic.mathdoc.fr/item/DAS_2023_a2/
LA  - en
ID  - DAS_2023_a2
ER  - 
%0 Journal Article
%A Fred Tyrrell
%T New Lower Bounds for Cap Sets
%J Discrete analysis
%D 2023
%U http://geodesic.mathdoc.fr/item/DAS_2023_a2/
%G en
%F DAS_2023_a2
Fred Tyrrell. New Lower Bounds for Cap Sets. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a2/