New Lower Bounds for Cap Sets
Discrete analysis (2023)
Cet article a éte moissonné depuis la source Scholastica
A cap set is a subset of $\mathbb{F}_3^n$ with no solutions to $x+y+z=0$ other than when $x=y=z$. In this paper, we provide a new lower bound on the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough $n$, there is always a cap set in $\mathbb{F}_3^n$ of size at least $2.218^n$.
@article{DAS_2023_a2,
author = {Fred Tyrrell},
title = {New {Lower} {Bounds} for {Cap} {Sets}},
journal = {Discrete analysis},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2023_a2/}
}
Fred Tyrrell. New Lower Bounds for Cap Sets. Discrete analysis (2023). http://geodesic.mathdoc.fr/item/DAS_2023_a2/