Multivariate Polynomial Values in Difference Sets
Discrete analysis (2021)
Cet article a éte moissonné depuis la source Scholastica
For $\ell\geq 2$ and $h\in \mathbb{Z}[x_1,\dots,x_{\ell}]$ of degree $k\geq 2$, we show that every set $A\subseteq \{1,2,\dots,N\}$ lacking nonzero differences in $h(\mathbb{Z}^{\ell})$ satisfies $|A|\ll_h Ne^{-c(\log N)^μ}$, where $c=c(h)>0$, $μ=[(k-1)^2+1]^{-1}$ if $\ell=2$, and $μ=1/2$ if $\ell\geq 3$, provided $h(\mathbb{Z}^{\ell})$ contains a multiple of every natural number and $h$ satisfies certain nonsingularity conditions. We also explore these conditions in detail, drawing on a variety of tools from algebraic geometry.
@article{DAS_2021_a16,
author = {John R. Doyle and Alex Rice},
title = {Multivariate {Polynomial} {Values} in {Difference} {Sets}},
journal = {Discrete analysis},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2021_a16/}
}
John R. Doyle; Alex Rice. Multivariate Polynomial Values in Difference Sets. Discrete analysis (2021). http://geodesic.mathdoc.fr/item/DAS_2021_a16/