A generalization of primitive sets and a conjecture of Erdős
Discrete analysis (2020) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

A set of integers greater than 1 is primitive if no element divides another. Erdős proved in 1935 that the sum of $1/(n \log n)$ for $n$ running over a primitive set $A$ is universally bounded over all choices for $A$. In 1988 he asked if this universal bound is attained by the set of prime numbers. We answer the Erdős question in the affirmative for 2-primitive sets. Here a set is 2-primitive if no element divides the product of 2 other elements.
Publié le :
@article{DAS_2020_a4,
     author = {Tsz Ho Chan and Jared Duker Lichtman and Carl Pomerance},
     title = {A generalization of primitive sets and a conjecture of {Erd\H{o}s}},
     journal = {Discrete analysis},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2020_a4/}
}
TY  - JOUR
AU  - Tsz Ho Chan
AU  - Jared Duker Lichtman
AU  - Carl Pomerance
TI  - A generalization of primitive sets and a conjecture of Erdős
JO  - Discrete analysis
PY  - 2020
UR  - http://geodesic.mathdoc.fr/item/DAS_2020_a4/
LA  - en
ID  - DAS_2020_a4
ER  - 
%0 Journal Article
%A Tsz Ho Chan
%A Jared Duker Lichtman
%A Carl Pomerance
%T A generalization of primitive sets and a conjecture of Erdős
%J Discrete analysis
%D 2020
%U http://geodesic.mathdoc.fr/item/DAS_2020_a4/
%G en
%F DAS_2020_a4
Tsz Ho Chan; Jared Duker Lichtman; Carl Pomerance. A generalization of primitive sets and a conjecture of Erdős. Discrete analysis (2020). http://geodesic.mathdoc.fr/item/DAS_2020_a4/