Asymptotic Structure for the Clique Density Theorem
Discrete analysis (2020) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

The famous Erdős-Rademacher problem asks for the smallest number of $r$-cliques in a graph with the given number of vertices and edges. Despite decades of active attempts, the asymptotic value of this extremal function for all $r$ was determined only recently, by Reiher [Annals of Mathematics, 184 (2016) 683--707]. Here we describe the asymptotic structure of all almost extremal graphs. This task for $r=3$ was previously accomplished by Pikhurko and Razborov [Combinatorics, Probability and Computing, 26 (2017) 138--160].
Publié le :
@article{DAS_2020_a1,
     author = {Jaehoon Kim and Hong Liu and Oleg Pikhurko and Maryam Sharifzadeh},
     title = {Asymptotic {Structure} for the {Clique} {Density} {Theorem}},
     journal = {Discrete analysis},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2020_a1/}
}
TY  - JOUR
AU  - Jaehoon Kim
AU  - Hong Liu
AU  - Oleg Pikhurko
AU  - Maryam Sharifzadeh
TI  - Asymptotic Structure for the Clique Density Theorem
JO  - Discrete analysis
PY  - 2020
UR  - http://geodesic.mathdoc.fr/item/DAS_2020_a1/
LA  - en
ID  - DAS_2020_a1
ER  - 
%0 Journal Article
%A Jaehoon Kim
%A Hong Liu
%A Oleg Pikhurko
%A Maryam Sharifzadeh
%T Asymptotic Structure for the Clique Density Theorem
%J Discrete analysis
%D 2020
%U http://geodesic.mathdoc.fr/item/DAS_2020_a1/
%G en
%F DAS_2020_a1
Jaehoon Kim; Hong Liu; Oleg Pikhurko; Maryam Sharifzadeh. Asymptotic Structure for the Clique Density Theorem. Discrete analysis (2020). http://geodesic.mathdoc.fr/item/DAS_2020_a1/