A characterization of polynomials whose high powers have non-negative coefficients
Discrete analysis (2020) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Let $f \in \mathbb{R}[x]$ be a polynomial with real coefficients. We say that $f$ is eventually non-negative if $f^m$ has non-negative coefficients for all sufficiently large $m \in \mathbb{N}$. In this short note, we give a classification of all eventually non-negative polynomials. This generalizes a theorem of De Angelis, and proves a conjecture of Bergweiler, Eremenko and Sokal
Publié le :
@article{DAS_2020_a0,
     author = {Marcus Michelen and Julian Sahasrabudhe},
     title = {A characterization of polynomials whose high powers have non-negative coefficients},
     journal = {Discrete analysis},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2020_a0/}
}
TY  - JOUR
AU  - Marcus Michelen
AU  - Julian Sahasrabudhe
TI  - A characterization of polynomials whose high powers have non-negative coefficients
JO  - Discrete analysis
PY  - 2020
UR  - http://geodesic.mathdoc.fr/item/DAS_2020_a0/
LA  - en
ID  - DAS_2020_a0
ER  - 
%0 Journal Article
%A Marcus Michelen
%A Julian Sahasrabudhe
%T A characterization of polynomials whose high powers have non-negative coefficients
%J Discrete analysis
%D 2020
%U http://geodesic.mathdoc.fr/item/DAS_2020_a0/
%G en
%F DAS_2020_a0
Marcus Michelen; Julian Sahasrabudhe. A characterization of polynomials whose high powers have non-negative coefficients. Discrete analysis (2020). http://geodesic.mathdoc.fr/item/DAS_2020_a0/