Analyticity of the entropy and the escape rate of random walks in hyperbolic groups
Discrete analysis (2017) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We consider random walks on a non-elementary hyperbolic group endowed with a word distance. To a probability measure on the group are associated two numerical quantities, the rate of escape and the entropy. On the set of admissible probability measures whose support is contained in a given finite set, we show that both quantities depend in an analytic way on the probability measure. Our spectral techniques also give a new proof of the central limit theorem, and imply that the corresponding variance is analytic.
Publié le :
@article{DAS_2017_a13,
     author = {S\'ebastien Gou\"ezel},
     title = {Analyticity of the entropy and the escape rate of random walks in hyperbolic groups},
     journal = {Discrete analysis},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2017_a13/}
}
TY  - JOUR
AU  - Sébastien Gouëzel
TI  - Analyticity of the entropy and the escape rate of random walks in hyperbolic groups
JO  - Discrete analysis
PY  - 2017
UR  - http://geodesic.mathdoc.fr/item/DAS_2017_a13/
LA  - en
ID  - DAS_2017_a13
ER  - 
%0 Journal Article
%A Sébastien Gouëzel
%T Analyticity of the entropy and the escape rate of random walks in hyperbolic groups
%J Discrete analysis
%D 2017
%U http://geodesic.mathdoc.fr/item/DAS_2017_a13/
%G en
%F DAS_2017_a13
Sébastien Gouëzel. Analyticity of the entropy and the escape rate of random walks in hyperbolic groups. Discrete analysis (2017). http://geodesic.mathdoc.fr/item/DAS_2017_a13/