From a Packing Problem to Quantitative Recurrence in $[0,1]$ and the Lagrange Spectrum of Interval Exchanges
Discrete analysis (2017) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

This article provides optimal constants for two quantitative recurrence problems. First of all for recurrence of maps of the interval [0,1] that preserve the Lebesgue measure and on the other hand Lagrange spectrum of interval exchange transformations. Both results are based on a non-conventional packing problem in the plane with respect to the "pseudo-norm" N(x,y) = sqrt(|xy|).
Publié le :
@article{DAS_2017_a10,
     author = {Michael Boshernitzan and Vincent Delecroix},
     title = {From a {Packing} {Problem} to {Quantitative} {Recurrence} in $[0,1]$ and the {Lagrange} {Spectrum} of {Interval} {Exchanges}},
     journal = {Discrete analysis},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2017_a10/}
}
TY  - JOUR
AU  - Michael Boshernitzan
AU  - Vincent Delecroix
TI  - From a Packing Problem to Quantitative Recurrence in $[0,1]$ and the Lagrange Spectrum of Interval Exchanges
JO  - Discrete analysis
PY  - 2017
UR  - http://geodesic.mathdoc.fr/item/DAS_2017_a10/
LA  - en
ID  - DAS_2017_a10
ER  - 
%0 Journal Article
%A Michael Boshernitzan
%A Vincent Delecroix
%T From a Packing Problem to Quantitative Recurrence in $[0,1]$ and the Lagrange Spectrum of Interval Exchanges
%J Discrete analysis
%D 2017
%U http://geodesic.mathdoc.fr/item/DAS_2017_a10/
%G en
%F DAS_2017_a10
Michael Boshernitzan; Vincent Delecroix. From a Packing Problem to Quantitative Recurrence in $[0,1]$ and the Lagrange Spectrum of Interval Exchanges. Discrete analysis (2017). http://geodesic.mathdoc.fr/item/DAS_2017_a10/