Construction of families of equations to describe irregular solutions in the Fermi--Pasta--Ulam problem
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 52-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of solutions of the spatial distributed chain in the Fermi–Pasta–Ulam problem is considered. Continual families of irregular solutions depending on parameters are constructed. It is shown that they are described by special systems of Schrödinger type. The influence exerted on the asymptotics of solutions by variations in the number of elements in the considered chain is studied.
Keywords: Fermi–Pasta–Ulam problem, quasi-normal forms, asymptotics, spatially distributed chains.
@article{DANMA_2021_501_a9,
     author = {S. A. Kaschenko},
     title = {Construction of families of equations to describe irregular solutions in the {Fermi--Pasta--Ulam} problem},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {52--56},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a9/}
}
TY  - JOUR
AU  - S. A. Kaschenko
TI  - Construction of families of equations to describe irregular solutions in the Fermi--Pasta--Ulam problem
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 52
EP  - 56
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a9/
LA  - ru
ID  - DANMA_2021_501_a9
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%T Construction of families of equations to describe irregular solutions in the Fermi--Pasta--Ulam problem
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 52-56
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a9/
%G ru
%F DANMA_2021_501_a9
S. A. Kaschenko. Construction of families of equations to describe irregular solutions in the Fermi--Pasta--Ulam problem. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 52-56. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a9/

[1] Russel Scott J., “Report of waves”, Report of the Fourteenth Meeting of the British Association for the Advancement of Science (York, Sept. 1844), 1845, 311–390

[2] Fermi E., Pasta J.R., Ulam S., Studies of Nonlinear Problems. I, Los Alamos Report LA-1940, Los Alamos Scientific Laboratory, 1955 | MR

[3] Dauxois T., Peyrard M., Ruffo S., The Fermi-Pasta-Ulam “numerical experiment”: history and pedagogical perspectives, 22 Mar. 2005, arXiv: nlin/0501053v2 | MR

[4] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., “Method for Solving the Korteweg-deVries Equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | MR

[5] Ablowitz M.J., Clarkson P.A., Solitons Nonlinear Evolution Equations and Inverse Scattering, Cambridge university press, 1991 | MR | Zbl

[6] Kudryashov N A., “Refinement of the Korteweg-de Vries equation from the Fermi-Pasta-Ulam model”, Phys. Lett. A, 279 (2015), 2610–2614 | DOI | MR

[7] Kudryashov N A., “From the Fermi-Pasta-Ulam Model to Higher-Order Nonlinear Evolution Equations”, Reports on mathematical Physics, 77:1 (2016), 57–67 | DOI | MR | Zbl

[8] Kashchenko S.A., “The interaction of waves in the Fermi-Pasta-Ulam model”, Communications in Nonlinear Science and Numerical Simulation, 91 (2020), 105436 | DOI | MR | Zbl

[9] Kaschenko S.A., “Normalization in the systems with small diffusion”, Int. J. of Bifurcations and chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl

[10] Kashchenko I.S., Kashchenko S.A., “Quasi-Normal Forms of Two-Component Singularly Perturbed Systems”, Doklady Mathematics, 86:3 (2012), 865 | DOI | MR | Zbl

[11] Kashchenko S.A., “Asymptotic Behavior of Rapidly Oscillating Solutions of the Modified Camassa-Holm Equation”, Theoretical and Mathematical Physics, 203:1 (2020), 469–482 | DOI | MR | Zbl

[12] Kashchenko I.S.,Kashchenko S.A., “Infinite Process of Forward and Backward Bifurcations in the Logistic Equation with Two Delays”, Nonlinear Phenomena in Complex Systems, 22:4 (2019), 407–412 | DOI | Zbl

[13] Ablowitz M.J.,Segur H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl

[14] Zabusky N.J., Kruskal M.D., “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states”, Phys Rev. Lett., 15 (1965), 240–243 | DOI | Zbl