Local Marchenko--Pastur law for sparse rectangular random matrices
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 22-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider sparse sample covariance matrices with sparsity probability $p_n\ge c_0\log^{\frac2\kappa}n/n$ with $\kappa>0$. Assuming that the distribution of matrix elements has a finite absolute moment of order $4+\delta$, $\delta>0$, it is shown that the distance between the Stieltjes transforms of the empirical spectral distribution function and the Marchenko–Pastur law is of order $\log n(1/(nv)+1/(np_n))$, где where $v$ is the distance to the real axis in the complex plane.
Keywords: local Marchenko–Pastur law, local regime, sparse random matrices, spectrum of a random matrix, Stieltjes transform.
@article{DANMA_2021_501_a3,
     author = {F. G\"otze and D. A. Timushev and A. N. Tikhomirov},
     title = {Local {Marchenko--Pastur} law for sparse rectangular random matrices},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {22--25},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a3/}
}
TY  - JOUR
AU  - F. Götze
AU  - D. A. Timushev
AU  - A. N. Tikhomirov
TI  - Local Marchenko--Pastur law for sparse rectangular random matrices
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 22
EP  - 25
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a3/
LA  - ru
ID  - DANMA_2021_501_a3
ER  - 
%0 Journal Article
%A F. Götze
%A D. A. Timushev
%A A. N. Tikhomirov
%T Local Marchenko--Pastur law for sparse rectangular random matrices
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 22-25
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a3/
%G ru
%F DANMA_2021_501_a3
F. Götze; D. A. Timushev; A. N. Tikhomirov. Local Marchenko--Pastur law for sparse rectangular random matrices. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 22-25. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a3/

[1] Wishart J., “The generalised product moment distribution in samples from a normal multivariate population”, Biometrika, 20A:1-2 (1928), 32–52 | DOI | MR

[2] Marchenko V.A., Pastur L.A., “Raspredelenie sobstvennykh znachenii v nekotorykh ansamblyakh sluchainykh matrits”, Matem. sb., 72:4 (1967), 507–536 | Zbl

[3] Erdös L., Knowles A., Yau H.-T., Yin J., “Spectral statistics of Erdös-Rényi graphs I: Local semicircle law”, Ann. Probab., 41:3B (2013), 2279–2375 | MR | Zbl

[4] Erdös L., Knowles A., Yau H.-T., Yin J., “Spectral statistics of Erdös-Rényi graphs II: Eigenvalue spacing and the extreme eigenvalues”, Comm. Math. Phys., 314:3 (2012), 587–640 | DOI | MR | Zbl

[5] Lee J.O., Schnelli K., “Tracy-Widom distribution for the largest eigenvalue of real sample covariance matrices with general population”, Ann. Appl. Probab., 26:6 (2016), 3786–3839 | DOI | MR | Zbl

[6] Hwang J.Y., Lee J.O., Schnelli K., “Local law and Tracy-Widom limit for sparse sample covariance matrices”, Ann. Appl. Probab., 29:5 (2019), 3006–3036 | DOI | MR | Zbl

[7] Hwang J.Y., Lee J.O., Yang W., “Local law and Tracy-Widom limit for sparse stochastic block models”, Bernoulli, 26:3 (2020), 2400–2435 | DOI | MR | Zbl

[8] Lee J.O., Schnelli K., “Local law and Tracy-Widom limit for sparse random matrices”, Probab. Theory Relat. Fields, 171 (2018), 543–616 | DOI | MR | Zbl

[9] Tikhomirov K., Youssef P., “Outliers in spectrum of sparse Wigner matrices”, Random Structures and Algorithms, 58:3 (2020), 517–605 | DOI | MR

[10] Seginer Y., “The expected norm of random matrices”, Combinatorics, Probability and Computing, 9:2 (2000), 149–166 | DOI | MR | Zbl

[11] Rudelson M., Vershynin R., “Smallest singular value of a random rectangular matrix”, Communications on Pure and Applied Mathematics, 62:12 (2009), 1707–1739 | DOI | MR | Zbl

[12] Götze F., Tikhomirov A.N., “The circular law for random matrices”, Ann. Probab., 38:4 (2010), 1444–1491 | DOI | MR | Zbl

[13] Götze F., Tikhomirov A.N., Rate of Convergence of the Expected Spectral Distribution Function to the Marchenko-Pastur Law, 2014, arXiv: 1412.6284