Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_501_a3, author = {F. G\"otze and D. A. Timushev and A. N. Tikhomirov}, title = {Local {Marchenko--Pastur} law for sparse rectangular random matrices}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {22--25}, publisher = {mathdoc}, volume = {501}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a3/} }
TY - JOUR AU - F. Götze AU - D. A. Timushev AU - A. N. Tikhomirov TI - Local Marchenko--Pastur law for sparse rectangular random matrices JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 22 EP - 25 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a3/ LA - ru ID - DANMA_2021_501_a3 ER -
%0 Journal Article %A F. Götze %A D. A. Timushev %A A. N. Tikhomirov %T Local Marchenko--Pastur law for sparse rectangular random matrices %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 22-25 %V 501 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a3/ %G ru %F DANMA_2021_501_a3
F. Götze; D. A. Timushev; A. N. Tikhomirov. Local Marchenko--Pastur law for sparse rectangular random matrices. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 22-25. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a3/
[1] Wishart J., “The generalised product moment distribution in samples from a normal multivariate population”, Biometrika, 20A:1-2 (1928), 32–52 | DOI | MR
[2] Marchenko V.A., Pastur L.A., “Raspredelenie sobstvennykh znachenii v nekotorykh ansamblyakh sluchainykh matrits”, Matem. sb., 72:4 (1967), 507–536 | Zbl
[3] Erdös L., Knowles A., Yau H.-T., Yin J., “Spectral statistics of Erdös-Rényi graphs I: Local semicircle law”, Ann. Probab., 41:3B (2013), 2279–2375 | MR | Zbl
[4] Erdös L., Knowles A., Yau H.-T., Yin J., “Spectral statistics of Erdös-Rényi graphs II: Eigenvalue spacing and the extreme eigenvalues”, Comm. Math. Phys., 314:3 (2012), 587–640 | DOI | MR | Zbl
[5] Lee J.O., Schnelli K., “Tracy-Widom distribution for the largest eigenvalue of real sample covariance matrices with general population”, Ann. Appl. Probab., 26:6 (2016), 3786–3839 | DOI | MR | Zbl
[6] Hwang J.Y., Lee J.O., Schnelli K., “Local law and Tracy-Widom limit for sparse sample covariance matrices”, Ann. Appl. Probab., 29:5 (2019), 3006–3036 | DOI | MR | Zbl
[7] Hwang J.Y., Lee J.O., Yang W., “Local law and Tracy-Widom limit for sparse stochastic block models”, Bernoulli, 26:3 (2020), 2400–2435 | DOI | MR | Zbl
[8] Lee J.O., Schnelli K., “Local law and Tracy-Widom limit for sparse random matrices”, Probab. Theory Relat. Fields, 171 (2018), 543–616 | DOI | MR | Zbl
[9] Tikhomirov K., Youssef P., “Outliers in spectrum of sparse Wigner matrices”, Random Structures and Algorithms, 58:3 (2020), 517–605 | DOI | MR
[10] Seginer Y., “The expected norm of random matrices”, Combinatorics, Probability and Computing, 9:2 (2000), 149–166 | DOI | MR | Zbl
[11] Rudelson M., Vershynin R., “Smallest singular value of a random rectangular matrix”, Communications on Pure and Applied Mathematics, 62:12 (2009), 1707–1739 | DOI | MR | Zbl
[12] Götze F., Tikhomirov A.N., “The circular law for random matrices”, Ann. Probab., 38:4 (2010), 1444–1491 | DOI | MR | Zbl
[13] Götze F., Tikhomirov A.N., Rate of Convergence of the Expected Spectral Distribution Function to the Marchenko-Pastur Law, 2014, arXiv: 1412.6284