On the spectrum of a non-self-adjoint quasiperiodic operator
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the operator $\mathscr{A}$ acting in $l^2(\mathbb{Z})$ by the formula $(\mathscr{A}u)_l=u_{l+1}+u_{l-1}+\lambda e^{-2\pi i(\theta+\omega l)}u_l$. Here, $l$ is an integer variable, while $\lambda>0$, $\theta\in[0,1)$, and $\omega\in(0,1)$ are parameters. For $\omega\notin\mathbb{Q}$, this is the simplest non-self-adjoint quasiperiodic operator. By means of a renormalization technique, we describe the geometry of the spectrum of this operator, compute the Lyapunov exponent on the spectrum, and describe the conditions under which either the spectrum is pure continuous or a point spectrum appears additionally.
Keywords: quasiperiodic operator, non-self-adjoint operator, Lyapunov exponent, spectrum.
@article{DANMA_2021_501_a2,
     author = {D. I. Borisov and A. A. Fedotov},
     title = {On the spectrum of a non-self-adjoint quasiperiodic operator},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {16--21},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a2/}
}
TY  - JOUR
AU  - D. I. Borisov
AU  - A. A. Fedotov
TI  - On the spectrum of a non-self-adjoint quasiperiodic operator
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 16
EP  - 21
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a2/
LA  - ru
ID  - DANMA_2021_501_a2
ER  - 
%0 Journal Article
%A D. I. Borisov
%A A. A. Fedotov
%T On the spectrum of a non-self-adjoint quasiperiodic operator
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 16-21
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a2/
%G ru
%F DANMA_2021_501_a2
D. I. Borisov; A. A. Fedotov. On the spectrum of a non-self-adjoint quasiperiodic operator. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 16-21. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a2/

[1] Cycon H.L., Froese R.G., Kirsch W., Simon B., Schrödinger operators with applications to quantum mechanics and global geometry, Springer-Verlag, Berlin, 1987, 329 pp. | MR

[2] Pastur L., Figotin A., Spectra of random and almost-periodic operators, Springer-Verlag, Berlin, 1992, 587 pp. | MR | Zbl

[3] Jitomirskaya S., Yang F., Ergodic Theory Dynam. Systems, 2020 (to appear) | MR

[4] Jitomirskaya S., Konstantinov L., Krasovsky I., 2007, arXiv: 2007.01005

[5] Marx C.A., Jitomirskaya S., Ergod. Theor. Dynam. Syst., 37:8 (2017), 2353–2393 | DOI | MR | Zbl

[6] Fedotov A., St. Petersburg Math. J., 25:2 (2014), 303–325 | DOI | MR | Zbl

[7] Sarnak P., Comm. Math. Phys., 84:3 (1982), 377–401 | DOI | MR | Zbl

[8] Boca F.P., Duke Math. J., 101:3 (2000), 515–528 | DOI | MR | Zbl

[9] Glazman I.M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, GIFML, M., 1963, 339 pp.

[10] Bender C.V., Europhys. News, 47:2 (2016), 17–20 | DOI

[11] Khinchin A.Ya., Tsepnye drobi, GIFML, M., 1978, 112 pp. | MR

[12] Fedotov A., J. Math. Sci., 238:5 (2019), 750–761 | DOI | MR | Zbl

[13] Simon B., Ann. Phys., 159:1 (1985), 157–183 | DOI | MR | Zbl

[14] Jitomirskaya S., Liu W., Comm. Pure Appl. Math., 70:6 (2017), 1025–1051 | DOI | MR