Quotients of Severi--Brauer surfaces
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a quotient of a non-trivial Severi–Brauer surface $S$ over arbitrary field $\mathbb k$ of characteristic 0 by a finite group $G\subset\operatorname{Aut}(S)$ is $\mathbb k$-rational if and only if $|G|$ is divisible by 3. Otherwise, the quotient is birationally equivalent to $S$.
Keywords: Severi–Brauer surfaces, rationality problems, Brauer group, minimal model program.
@article{DANMA_2021_501_a15,
     author = {A. S. Trepalin},
     title = {Quotients of {Severi--Brauer} surfaces},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {84--88},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/}
}
TY  - JOUR
AU  - A. S. Trepalin
TI  - Quotients of Severi--Brauer surfaces
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 84
EP  - 88
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/
LA  - ru
ID  - DANMA_2021_501_a15
ER  - 
%0 Journal Article
%A A. S. Trepalin
%T Quotients of Severi--Brauer surfaces
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 84-88
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/
%G ru
%F DANMA_2021_501_a15
A. S. Trepalin. Quotients of Severi--Brauer surfaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 84-88. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/

[1] J. Kollar, Severi-Brauer varieties; a geometric treatment, 2016, arXiv: 1606.04368

[2] C. Shramov, V. Vologodsky, Boundedness for finite subgroups of linear algebraic groups, 2020, arXiv: 2009.14485 | MR

[3] K. A. Shramov, “Biratsionalnye avtomorfizmy poverkhnostei Severi-Brauera”, Matem. sb., 211:3 (2020), 169–184 | DOI | MR | Zbl

[4] K. A. Shramov, “Neabelevy gruppy, deistvuyuschie na poverkhnostyakh Severi-Brauera”, Matem. zametki, 108:6 (2020), 952–953 | DOI | Zbl

[5] C. Shramov, “Finite groups acting on Severi-Brauer surfaces”, Eur. J. Math., 7:2 (2021), 591–612 | DOI | MR | Zbl

[6] G. Castelnuovo, “Sulla razionalita delle involuzioni piane”, Math. Ann., 44 (1894), 125–155 | DOI | MR

[7] A. S. Trepalin, “Rationality of the quotient of ${{\mathbb{P}}{2}}$ by finite group of automorphisms over arbitrary field of characteristic zero”, Cent. Eur. J. Math., 12:2 (2014), 229–239 | MR | Zbl

[8] A. Trepalin, “Quotients of del Pezzo surfaces”, Int. J. Math., 30:11 (2019), 1950068, 40 pp. | DOI | MR | Zbl

[9] S. O. Gorchinskii, K. A. Shramov, Nerazvetvlennaya gruppa Brauera i ee prilozheniya, MTsNMO, M., 2018, 200 pp.

[10] S. A. Amitsur, “Generic splitting fields of central simple algebras”, Ann. Math., 62:2 (1955), 8–43 | DOI | MR | Zbl

[11] C. Shramov, “Automorphisms of cubic surfaces without points”, Int. J. Math., 21:11 (2020), 2050083, 15 pp. | DOI | MR

[12] V. A. Iskovskikh, “Faktorizatsiya biratsionalnykh otobrazhenii ratsionalnykh poverkhnostei s tochki zreniya teorii Mori”, UMN, 51:4 (310) (1996), 3–72 | DOI | MR | Zbl