Quotients of Severi--Brauer surfaces
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 84-88

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a quotient of a non-trivial Severi–Brauer surface $S$ over arbitrary field $\mathbb k$ of characteristic 0 by a finite group $G\subset\operatorname{Aut}(S)$ is $\mathbb k$-rational if and only if $|G|$ is divisible by 3. Otherwise, the quotient is birationally equivalent to $S$.
Keywords: Severi–Brauer surfaces, rationality problems, Brauer group, minimal model program.
@article{DANMA_2021_501_a15,
     author = {A. S. Trepalin},
     title = {Quotients of {Severi--Brauer} surfaces},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {84--88},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/}
}
TY  - JOUR
AU  - A. S. Trepalin
TI  - Quotients of Severi--Brauer surfaces
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 84
EP  - 88
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/
LA  - ru
ID  - DANMA_2021_501_a15
ER  - 
%0 Journal Article
%A A. S. Trepalin
%T Quotients of Severi--Brauer surfaces
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 84-88
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/
%G ru
%F DANMA_2021_501_a15
A. S. Trepalin. Quotients of Severi--Brauer surfaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 84-88. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/