Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_501_a15, author = {A. S. Trepalin}, title = {Quotients of {Severi--Brauer} surfaces}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {84--88}, publisher = {mathdoc}, volume = {501}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/} }
A. S. Trepalin. Quotients of Severi--Brauer surfaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 84-88. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a15/
[1] J. Kollar, Severi-Brauer varieties; a geometric treatment, 2016, arXiv: 1606.04368
[2] C. Shramov, V. Vologodsky, Boundedness for finite subgroups of linear algebraic groups, 2020, arXiv: 2009.14485 | MR
[3] K. A. Shramov, “Biratsionalnye avtomorfizmy poverkhnostei Severi-Brauera”, Matem. sb., 211:3 (2020), 169–184 | DOI | MR | Zbl
[4] K. A. Shramov, “Neabelevy gruppy, deistvuyuschie na poverkhnostyakh Severi-Brauera”, Matem. zametki, 108:6 (2020), 952–953 | DOI | Zbl
[5] C. Shramov, “Finite groups acting on Severi-Brauer surfaces”, Eur. J. Math., 7:2 (2021), 591–612 | DOI | MR | Zbl
[6] G. Castelnuovo, “Sulla razionalita delle involuzioni piane”, Math. Ann., 44 (1894), 125–155 | DOI | MR
[7] A. S. Trepalin, “Rationality of the quotient of ${{\mathbb{P}}{2}}$ by finite group of automorphisms over arbitrary field of characteristic zero”, Cent. Eur. J. Math., 12:2 (2014), 229–239 | MR | Zbl
[8] A. Trepalin, “Quotients of del Pezzo surfaces”, Int. J. Math., 30:11 (2019), 1950068, 40 pp. | DOI | MR | Zbl
[9] S. O. Gorchinskii, K. A. Shramov, Nerazvetvlennaya gruppa Brauera i ee prilozheniya, MTsNMO, M., 2018, 200 pp.
[10] S. A. Amitsur, “Generic splitting fields of central simple algebras”, Ann. Math., 62:2 (1955), 8–43 | DOI | MR | Zbl
[11] C. Shramov, “Automorphisms of cubic surfaces without points”, Int. J. Math., 21:11 (2020), 2050083, 15 pp. | DOI | MR
[12] V. A. Iskovskikh, “Faktorizatsiya biratsionalnykh otobrazhenii ratsionalnykh poverkhnostei s tochki zreniya teorii Mori”, UMN, 51:4 (310) (1996), 3–72 | DOI | MR | Zbl