Phaseless problem of determination of anisotropic conductivity in electrodynamic equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

or a system of electrodynamic equations corresponding to time-periodic oscillations, two inverse problems of determining anisotropic conductivity from given phaseless information on solutions of some direct problems are considered. It is supposed that the conductivity is described by a diagonal matrix $\sigma(x)=\operatorname{diag}(\sigma_1(x),\sigma_2(x),\sigma_3(x))$ such that $\sigma(x)=0$ outside of a compact domain $\Omega$. Plane waves coming from infinity are considered impinging on the inhomogeneity. To determine the unknown functions, the moduli of some components of the electric intensity vector of the total or scattered high-frequency electromagnetic fields are given on the boundary of $\Omega$. It is proved that this information reduces the inverse problems to problems of X-ray tomography.
Keywords: Maxwell equations, plane waves, phaseless inverse problem, anisotropy, conductivity, X-ray tomography.
@article{DANMA_2021_501_a14,
     author = {V. G. Romanov},
     title = {Phaseless problem of determination of anisotropic conductivity in electrodynamic equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a14/}
}
TY  - JOUR
AU  - V. G. Romanov
TI  - Phaseless problem of determination of anisotropic conductivity in electrodynamic equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 79
EP  - 83
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a14/
LA  - ru
ID  - DANMA_2021_501_a14
ER  - 
%0 Journal Article
%A V. G. Romanov
%T Phaseless problem of determination of anisotropic conductivity in electrodynamic equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 79-83
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a14/
%G ru
%F DANMA_2021_501_a14
V. G. Romanov. Phaseless problem of determination of anisotropic conductivity in electrodynamic equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 79-83. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a14/

[1] Chadan K., Sabatier P.C., Inverse Problems in Quantum Scattering Theory, Springer-Verlag, N.Y., 1977 | MR | Zbl

[2] Newton R.G., Inverse Schrödinger Scattering in Three Dimensions, Springer, N.Y., 1989 | MR | Zbl

[3] Klibanov M.V., Sacks P.E., J. Math. Phys., 33 (1992), 3813–3821 | DOI | MR | Zbl

[4] Klibanov M.V., SIAM J. Appl. Math., 74 (2014), 392–410 | DOI | MR | Zbl

[5] Klibanov M.V., Applied Mathematics Letters, 37 (2014), 82–85 | DOI | MR | Zbl

[6] Novikov R.G., J. Geometrical Analysis, 2015, 9553–7 | DOI

[7] Novikov R.G., Bulletin des Sciences Mathématiques, 2015 | DOI

[8] Novikov R.G., Eurasian J. of Math. and Comp. Appl., 3 (2015), 64–70

[9] Romanov V.G., ZhVMMF, 60:6 (2020), 142–160

[10] Romanov V.G., Sib. matem. zhurn., 58:4 (2017), 916–924 | MR | Zbl

[11] Romanov V.G., Sib. matem. zhurn., 59:3 (2018), 626–638 | MR | Zbl

[12] Klibanov M.V., Nguyen L.H., Pan K., Appl. Numer. Math., 110 (2016), 190–203 | DOI | MR | Zbl

[13] Karchevskii A.L., Dedok V.A., Sib. zhurn. industr. matem., 12:3 (2018), 50–59 | MR | Zbl

[14] Romanov V.G., Doklady RAN. Matematika, informatika, protsessy upravleniya, 496:1 (2021), 53–55 | DOI | MR | Zbl

[15] Vainberg B.R., UMN, 21:3 (1966), 115–194 | MR | Zbl