Mathematical modeling of neo-Hookean material growth
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 74-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the volumetric growth of an incompressible neo-Hookean material is derived. Models of this type are used to describe the evolution of the human brain under the action of an external load. In the paper, we show that the space of deformation fields in a homeostatic state coincides with the Möbius group of conformal transforms in $\mathbb{R}^3$. We prove the well-posedness of the linear boundary value problem obtained by linearizing the governing equations around a homeostatic state. The behavior of solutions when the time variable tends to infinity is studied. The main conclusion is that changes in the material, caused by a temporary increase in pressure (hydrocephalus) are irreversible.
Keywords: volumetric growth, neo-Hookean material, Stokes equations, Möbius group.
@article{DANMA_2021_501_a13,
     author = {P. I. Plotnikov},
     title = {Mathematical modeling of {neo-Hookean} material growth},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {74--78},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a13/}
}
TY  - JOUR
AU  - P. I. Plotnikov
TI  - Mathematical modeling of neo-Hookean material growth
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 74
EP  - 78
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a13/
LA  - ru
ID  - DANMA_2021_501_a13
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%T Mathematical modeling of neo-Hookean material growth
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 74-78
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a13/
%G ru
%F DANMA_2021_501_a13
P. I. Plotnikov. Mathematical modeling of neo-Hookean material growth. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 74-78. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a13/

[1] Ciarlet P., Mathematical elasticity 1: Three-dimensional Elasticity, Elsevier Science Publishers, Basel, 1988 | MR

[2] Ciarletta P., Ambrosi D., Maugin G.A., “Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling”, J. Mech. Phys. Solids, 60 (2012), 432–450 | DOI | MR | Zbl

[3] Cowin S.C., “Tissue growth and remodeling”, Annu. Rev. Biomed. Eng, 6 (2004), 77–107 | DOI

[4] Epstein M., Maugin G.A., “Thermomechanics of volumetric growth in uniform bodies”, Int. J. Plasticity, 16 (2000), 951–978 | DOI | Zbl

[5] Reshetnyak Yu.G., “Otsenki dlya nekotorykh differentsialnykh operatorov s konechnomernym yadrom”, Sib. matem. zhurn., 11:2 (1970), 414–428 | Zbl

[6] Rodriguez E., Hoger A., McCulloch A., “Stress-dependent finite growth law in soft elastic tissue”, J. Biomech., 27 (1994), 455–467 | DOI

[7] Skalak R., Dasgupta G., Moss M., Otten E., Dullemeijer P., Vilmann H., “Analytical description of growth”, J. Theor. Biol., 94 (1982), 555–577 | DOI | MR