Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_501_a13, author = {P. I. Plotnikov}, title = {Mathematical modeling of {neo-Hookean} material growth}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {74--78}, publisher = {mathdoc}, volume = {501}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a13/} }
TY - JOUR AU - P. I. Plotnikov TI - Mathematical modeling of neo-Hookean material growth JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 74 EP - 78 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a13/ LA - ru ID - DANMA_2021_501_a13 ER -
P. I. Plotnikov. Mathematical modeling of neo-Hookean material growth. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 74-78. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a13/
[1] Ciarlet P., Mathematical elasticity 1: Three-dimensional Elasticity, Elsevier Science Publishers, Basel, 1988 | MR
[2] Ciarletta P., Ambrosi D., Maugin G.A., “Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling”, J. Mech. Phys. Solids, 60 (2012), 432–450 | DOI | MR | Zbl
[3] Cowin S.C., “Tissue growth and remodeling”, Annu. Rev. Biomed. Eng, 6 (2004), 77–107 | DOI
[4] Epstein M., Maugin G.A., “Thermomechanics of volumetric growth in uniform bodies”, Int. J. Plasticity, 16 (2000), 951–978 | DOI | Zbl
[5] Reshetnyak Yu.G., “Otsenki dlya nekotorykh differentsialnykh operatorov s konechnomernym yadrom”, Sib. matem. zhurn., 11:2 (1970), 414–428 | Zbl
[6] Rodriguez E., Hoger A., McCulloch A., “Stress-dependent finite growth law in soft elastic tissue”, J. Biomech., 27 (1994), 455–467 | DOI
[7] Skalak R., Dasgupta G., Moss M., Otten E., Dullemeijer P., Vilmann H., “Analytical description of growth”, J. Theor. Biol., 94 (1982), 555–577 | DOI | MR