Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_501_a12, author = {I. B. Petrov and V. I. Golubev and E. K. Guseva}, title = {Hybrid grid-characteristic schemes for arctic seismic problems}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {67--73}, publisher = {mathdoc}, volume = {501}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a12/} }
TY - JOUR AU - I. B. Petrov AU - V. I. Golubev AU - E. K. Guseva TI - Hybrid grid-characteristic schemes for arctic seismic problems JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 67 EP - 73 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a12/ LA - ru ID - DANMA_2021_501_a12 ER -
%0 Journal Article %A I. B. Petrov %A V. I. Golubev %A E. K. Guseva %T Hybrid grid-characteristic schemes for arctic seismic problems %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 67-73 %V 501 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a12/ %G ru %F DANMA_2021_501_a12
I. B. Petrov; V. I. Golubev; E. K. Guseva. Hybrid grid-characteristic schemes for arctic seismic problems. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 67-73. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a12/
[1] Crawford A.J., Mueller D.R., Humphreys E.R., Carrieres T., Tran H., “Surface ablation model evaluation on a drifting ice island in the Canadian Arctic”, Cold Regions Science and Technology, 110 (2015), 170–182 | DOI
[2] Crawford A., Crocker G., Mueller D., Desjardins L., Saper R., Carrieres T., “The Canadian ice island drift, deterioration and detection (CI2D3) database”, Journal of Glaciology, 64(245) (2018), 517–521 | DOI
[3] Muratov M.V., Biryukov V.A., Konov D.S., Petrov I.B., “Mathematical modeling of temperature changes impact on artificial ice islands”, Radioelektronika, Nanosistemy, Informacionnye Tehnologii, 13:1 (2021), 79–86
[4] Ladanyi B., “Rheology of ice/rock systems and interfaces”, Permafrost, eds. M. Phillips, S. Springman, L. Arenson, 2003
[5] Golubev V.I., Shevchenko A.V., Petrov I.B., “Application of the Dorovsky model for taking into account the fluid saturation of geological media”, Journal of Physics: Conference Series, 1715:1 (2021), 012056 | DOI
[6] Golubev V.I., Vasyukov A.V., Churyakov M., “Modeling Wave Responses from Thawed Permafrost Zones”, Smart Innovation, Systems and Technologies, 214 (2021), 137–148 | DOI
[7] Petrov I.B., Muratov M.V., Sergeev F.I., “Elastic Wave Propagation Modeling During Exploratory Drilling on Artificial Ice Island”, Smart Innovation, Systems and Technologies, 217 (2021), 171–183 | DOI | MR
[8] Sedov L.I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1970 | MR
[9] Aleksandrov K.S., Prodaivoda G.T., Anizotropiya uprugikh svoistv mineralov i gornykh porod, 2000
[10] Petrov I.B., Kholodov A.S., “Numerical investigation of certain dynamical problems of the mechanics of a deformable solid body by the grid-characteristic method”, U.S.S.R. Comput. Math. Math. Phys., 24:3 (1984), 61–73 | DOI | MR | Zbl
[11] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988
[12] Stankiewicz A., “Fractional Maxwell model of viscoelastic biological materials”, BIO Web Conf., 10 (2018), 02032 | DOI
[13] Godunov S.K., Romenskii E.I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Gorod, 1998 | MR
[14] Kukudzhanov V.N., Chislennoe reshenie neodnomernykh zadach rasprostraneniya voln napryazhenii v tverdykh telakh, M., 1976, 66 pp.
[15] Golubev V.I., Shevchenko A.V., Khokhlov N.I., Nikitin I.S., “Numerical investigation of compact grid-characteristic schemes for acoustic problems”, Journal of Physics: Conference Series, 1902:1 (2021), 012110 | DOI
[16] Beklemysheva K.A., Golubev V.I., Petrov I.B., Vasyukov A.V., “Determining effects of impact loading on residual strength of fiber-metal laminates with grid-characteristic numerical method”, Chinese Journal of Aeronautics, 34:7 (2021), 1–12 | DOI
[17] Konyagin S., Popov B., Trifonov O., “On Convergence of Minmod-Type Schemes”, SIAM J. Numerical Analysis, 42 (2005), 1978–1997 | DOI | MR | Zbl
[18] Shu C.-W., “Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, 2006, 325–432 | MR
[19] Harten A., “High resolution schemes for hyperbolic conservation laws”, Comput. Phys, 49:3 (1987), 357–393 | DOI | MR
[20] Petrov I.B., Kholodov A.S., “Regularization of discontinuous numerical solutions of equations of hyperbolic type”, U.S.S.R. Comput. Math. Math. Phys., 24:4 (1984), 128–138 | DOI | MR | Zbl
[21] Kholodov A.S., Kholodov Y.A., “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comput. Math. and Math. Phys., 46 (2006), 1560–1588 | DOI | MR
[22] Kholodov A. S., “The construction of difference schemes of increased order of accuracy for equations of hyperbolic type”, USSR Computational Mathematics and Mathematical Physics, 20:6 (1980), 234–253 | DOI | MR | Zbl
[23] Fridrichs K.O., “Symmetric hyperbolic linear differential equations”, Communications on Pure and Applied Mathematics, 7:2 (1954), 345–392 | DOI | MR
[24] Magomedov K.M., Kholodov A.S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 2018, 287 pp. | MR