Hybrid grid-characteristic schemes for arctic seismic problems
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 67-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The process of conducting seismic exploration of gas fields with a source and receivers installed on the surface of an ice island is considered. A model that includes an ice formation, water area, multilayer geological massif, and a methane reservoir is built. The dynamic behavior of individual media is described using the theory of linear elasticity, acoustic equations, Maxwell’s viscoelastic model, and Kukudzhanov’s viscoelastoplastic model. The governing system of equations is solved numerically by applying the grid-characteristic method on rectangular meshes. Physical contact conditions between the media are set explicitly. A new hybrid scheme of higher order accuracy is constructed using a grid-characteristic monotonicity criterion. The scheme is used to obtain a full-wave solution of a two-dimensional seismic problem.
Keywords: direct seismic survey problem, artificial ice island, mathematical simulation, grid-characteristic method, monotonicity criterion, hybrid scheme.
@article{DANMA_2021_501_a12,
     author = {I. B. Petrov and V. I. Golubev and E. K. Guseva},
     title = {Hybrid grid-characteristic schemes for arctic seismic problems},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a12/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - V. I. Golubev
AU  - E. K. Guseva
TI  - Hybrid grid-characteristic schemes for arctic seismic problems
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 67
EP  - 73
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a12/
LA  - ru
ID  - DANMA_2021_501_a12
ER  - 
%0 Journal Article
%A I. B. Petrov
%A V. I. Golubev
%A E. K. Guseva
%T Hybrid grid-characteristic schemes for arctic seismic problems
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 67-73
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a12/
%G ru
%F DANMA_2021_501_a12
I. B. Petrov; V. I. Golubev; E. K. Guseva. Hybrid grid-characteristic schemes for arctic seismic problems. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 67-73. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a12/

[1] Crawford A.J., Mueller D.R., Humphreys E.R., Carrieres T., Tran H., “Surface ablation model evaluation on a drifting ice island in the Canadian Arctic”, Cold Regions Science and Technology, 110 (2015), 170–182 | DOI

[2] Crawford A., Crocker G., Mueller D., Desjardins L., Saper R., Carrieres T., “The Canadian ice island drift, deterioration and detection (CI2D3) database”, Journal of Glaciology, 64(245) (2018), 517–521 | DOI

[3] Muratov M.V., Biryukov V.A., Konov D.S., Petrov I.B., “Mathematical modeling of temperature changes impact on artificial ice islands”, Radioelektronika, Nanosistemy, Informacionnye Tehnologii, 13:1 (2021), 79–86

[4] Ladanyi B., “Rheology of ice/rock systems and interfaces”, Permafrost, eds. M. Phillips, S. Springman, L. Arenson, 2003

[5] Golubev V.I., Shevchenko A.V., Petrov I.B., “Application of the Dorovsky model for taking into account the fluid saturation of geological media”, Journal of Physics: Conference Series, 1715:1 (2021), 012056 | DOI

[6] Golubev V.I., Vasyukov A.V., Churyakov M., “Modeling Wave Responses from Thawed Permafrost Zones”, Smart Innovation, Systems and Technologies, 214 (2021), 137–148 | DOI

[7] Petrov I.B., Muratov M.V., Sergeev F.I., “Elastic Wave Propagation Modeling During Exploratory Drilling on Artificial Ice Island”, Smart Innovation, Systems and Technologies, 217 (2021), 171–183 | DOI | MR

[8] Sedov L.I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1970 | MR

[9] Aleksandrov K.S., Prodaivoda G.T., Anizotropiya uprugikh svoistv mineralov i gornykh porod, 2000

[10] Petrov I.B., Kholodov A.S., “Numerical investigation of certain dynamical problems of the mechanics of a deformable solid body by the grid-characteristic method”, U.S.S.R. Comput. Math. Math. Phys., 24:3 (1984), 61–73 | DOI | MR | Zbl

[11] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988

[12] Stankiewicz A., “Fractional Maxwell model of viscoelastic biological materials”, BIO Web Conf., 10 (2018), 02032 | DOI

[13] Godunov S.K., Romenskii E.I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Gorod, 1998 | MR

[14] Kukudzhanov V.N., Chislennoe reshenie neodnomernykh zadach rasprostraneniya voln napryazhenii v tverdykh telakh, M., 1976, 66 pp.

[15] Golubev V.I., Shevchenko A.V., Khokhlov N.I., Nikitin I.S., “Numerical investigation of compact grid-characteristic schemes for acoustic problems”, Journal of Physics: Conference Series, 1902:1 (2021), 012110 | DOI

[16] Beklemysheva K.A., Golubev V.I., Petrov I.B., Vasyukov A.V., “Determining effects of impact loading on residual strength of fiber-metal laminates with grid-characteristic numerical method”, Chinese Journal of Aeronautics, 34:7 (2021), 1–12 | DOI

[17] Konyagin S., Popov B., Trifonov O., “On Convergence of Minmod-Type Schemes”, SIAM J. Numerical Analysis, 42 (2005), 1978–1997 | DOI | MR | Zbl

[18] Shu C.-W., “Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, 2006, 325–432 | MR

[19] Harten A., “High resolution schemes for hyperbolic conservation laws”, Comput. Phys, 49:3 (1987), 357–393 | DOI | MR

[20] Petrov I.B., Kholodov A.S., “Regularization of discontinuous numerical solutions of equations of hyperbolic type”, U.S.S.R. Comput. Math. Math. Phys., 24:4 (1984), 128–138 | DOI | MR | Zbl

[21] Kholodov A.S., Kholodov Y.A., “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comput. Math. and Math. Phys., 46 (2006), 1560–1588 | DOI | MR

[22] Kholodov A. S., “The construction of difference schemes of increased order of accuracy for equations of hyperbolic type”, USSR Computational Mathematics and Mathematical Physics, 20:6 (1980), 234–253 | DOI | MR | Zbl

[23] Fridrichs K.O., “Symmetric hyperbolic linear differential equations”, Communications on Pure and Applied Mathematics, 7:2 (1954), 345–392 | DOI | MR

[24] Magomedov K.M., Kholodov A.S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 2018, 287 pp. | MR