On stable random variables with a complex stability index
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 5-10

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct complex-valued random variables that satisfy the usual stability condition, but for a complex stability index $\alpha$ satisfying the conditions $|\alpha-1|1$ and $|\alpha-\frac12|\ne\frac12$. A representation of the characteristic functions of the constructed random variables is found, and limit theorems for sums of independent identically distributed random variables are formulated.
Keywords: stable distributions, infinitely divisible distributions, limit theorems.
@article{DANMA_2021_501_a0,
     author = {I. A. Alekseev},
     title = {On stable random variables with a complex stability index},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/}
}
TY  - JOUR
AU  - I. A. Alekseev
TI  - On stable random variables with a complex stability index
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 5
EP  - 10
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/
LA  - ru
ID  - DANMA_2021_501_a0
ER  - 
%0 Journal Article
%A I. A. Alekseev
%T On stable random variables with a complex stability index
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 5-10
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/
%G ru
%F DANMA_2021_501_a0
I. A. Alekseev. On stable random variables with a complex stability index. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 5-10. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/