On stable random variables with a complex stability index
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 5-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct complex-valued random variables that satisfy the usual stability condition, but for a complex stability index $\alpha$ satisfying the conditions $|\alpha-1|1$ and $|\alpha-\frac12|\ne\frac12$. A representation of the characteristic functions of the constructed random variables is found, and limit theorems for sums of independent identically distributed random variables are formulated.
Keywords: stable distributions, infinitely divisible distributions, limit theorems.
@article{DANMA_2021_501_a0,
     author = {I. A. Alekseev},
     title = {On stable random variables with a complex stability index},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/}
}
TY  - JOUR
AU  - I. A. Alekseev
TI  - On stable random variables with a complex stability index
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 5
EP  - 10
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/
LA  - ru
ID  - DANMA_2021_501_a0
ER  - 
%0 Journal Article
%A I. A. Alekseev
%T On stable random variables with a complex stability index
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 5-10
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/
%G ru
%F DANMA_2021_501_a0
I. A. Alekseev. On stable random variables with a complex stability index. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 5-10. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/

[1] Vershik A.M., Gelfand I.M., Graev M.I., “Kommutativnaya model predstavleniya gruppy tokov $SL{{(2,\mathbb{R})}^{X}}$, svyazannaya s unipotentnoi podgruppoi”, Funktsionalnyi analiz i ego prilozheniya, 17 (1983), 70–72 | Zbl

[2] Gantmakher F.R., Teoriya matrits, Nauka, M., 1966 | MR

[3] Zolotarev V.M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983

[4] Ibragimov I.A., Linnik Yu.V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[5] Kingman Dzh., Puassonovskie protsessy, Izdatelstvo MTsNMO, M., 2007

[6] Lifshits M.A., “Invariantnye mery, porozhdaemye sluchainymi polyami s nezavisimymi znacheniyami”, Funktsionalnyi analiz i ego prilozheniya, 19 (1985), 92–93 | MR

[7] Platonova M.V., “Simmetrichnye $\alpha $-ustoichivye raspredeleniya s netselym $\alpha > 2$ i svyazannye s nimi stokhasticheskie protsessy”, Zapiski nauchnykh seminarov POMI, 442, 2015, 101–117

[8] Smorodina N.V., Faddeev M.M., “Teoremy o skhodimosti raspredelenii stokhasticheskikh integralov k znakoperemennym meram i lokalnye predelnye teoremy dlya bolshikh uklonenii”, Zap. nauchn. sem. POMI, 368, 2009, 201–228

[9] Kremer D., Scheffler H.-P., “Multi operator-stable random measures and fields”, Stochastic Models, 35:4 (2019), 429–468 | DOI | MR | Zbl

[10] Meerschaert M.M., Scheffler H.-P., Limit distributions for sums of independent random vectors: heavy tails in theory and practice, Wiley, N.Y., 2001 | MR | Zbl

[11] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 2013 | MR

[12] Sharpe M., “Operator-Stable probability distributions on vector groups”, Transactions of the American Mathematical Society, 136 (1969), 51–65 | DOI | MR | Zbl

[13] Smorodina N.V., Faddeev M.M., “The Levy-Khinchin representation of the one class of signed stable measures and some its applications”, Acta applicandae mathematicae, 110 (2010), 1289–1308 | DOI | MR | Zbl