Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_501_a0, author = {I. A. Alekseev}, title = {On stable random variables with a complex stability index}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {5--10}, publisher = {mathdoc}, volume = {501}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/} }
TY - JOUR AU - I. A. Alekseev TI - On stable random variables with a complex stability index JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 5 EP - 10 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/ LA - ru ID - DANMA_2021_501_a0 ER -
I. A. Alekseev. On stable random variables with a complex stability index. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 501 (2021), pp. 5-10. http://geodesic.mathdoc.fr/item/DANMA_2021_501_a0/
[1] Vershik A.M., Gelfand I.M., Graev M.I., “Kommutativnaya model predstavleniya gruppy tokov $SL{{(2,\mathbb{R})}^{X}}$, svyazannaya s unipotentnoi podgruppoi”, Funktsionalnyi analiz i ego prilozheniya, 17 (1983), 70–72 | Zbl
[2] Gantmakher F.R., Teoriya matrits, Nauka, M., 1966 | MR
[3] Zolotarev V.M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983
[4] Ibragimov I.A., Linnik Yu.V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[5] Kingman Dzh., Puassonovskie protsessy, Izdatelstvo MTsNMO, M., 2007
[6] Lifshits M.A., “Invariantnye mery, porozhdaemye sluchainymi polyami s nezavisimymi znacheniyami”, Funktsionalnyi analiz i ego prilozheniya, 19 (1985), 92–93 | MR
[7] Platonova M.V., “Simmetrichnye $\alpha $-ustoichivye raspredeleniya s netselym $\alpha > 2$ i svyazannye s nimi stokhasticheskie protsessy”, Zapiski nauchnykh seminarov POMI, 442, 2015, 101–117
[8] Smorodina N.V., Faddeev M.M., “Teoremy o skhodimosti raspredelenii stokhasticheskikh integralov k znakoperemennym meram i lokalnye predelnye teoremy dlya bolshikh uklonenii”, Zap. nauchn. sem. POMI, 368, 2009, 201–228
[9] Kremer D., Scheffler H.-P., “Multi operator-stable random measures and fields”, Stochastic Models, 35:4 (2019), 429–468 | DOI | MR | Zbl
[10] Meerschaert M.M., Scheffler H.-P., Limit distributions for sums of independent random vectors: heavy tails in theory and practice, Wiley, N.Y., 2001 | MR | Zbl
[11] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 2013 | MR
[12] Sharpe M., “Operator-Stable probability distributions on vector groups”, Transactions of the American Mathematical Society, 136 (1969), 51–65 | DOI | MR | Zbl
[13] Smorodina N.V., Faddeev M.M., “The Levy-Khinchin representation of the one class of signed stable measures and some its applications”, Acta applicandae mathematicae, 110 (2010), 1289–1308 | DOI | MR | Zbl