Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 40-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fractured media are important objects of investigation, because they accumulate oil. Hydraulic fracturing is of great practical interest. The exploration of such heterogeneities with the help of mathematical modeling methods makes it possible to examine different problem formulations with fractures of different forms, sizes, and other characteristics. The Schoenberg fracture model takes into account the characteristics of the fluid inside the fracture, which is utterly important in conducting seismic geological surveys. In this work, an algorithm for computing the medium parameters at the boundary of a fracture described by the Schoenberg model is developed using the grid-characteristic method. We present the results obtained by applying the developed algorithm to the solution of the problem of seismic monitoring of a hydraulic fracture, where the fracture-filling fluid is a necessary part of the investigation.
Keywords: fracture models, seismology, grid-characteristic method, hydraulic fracturing.
@article{DANMA_2021_500_a7,
     author = {I. B. Petrov and P. V. Stognii and N. I. Khokhlov},
     title = {Mathematical modeling of {3D} dynamic processes near a fracture using the {Schoenberg} fracture model},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {40--44},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a7/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - P. V. Stognii
AU  - N. I. Khokhlov
TI  - Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 40
EP  - 44
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a7/
LA  - ru
ID  - DANMA_2021_500_a7
ER  - 
%0 Journal Article
%A I. B. Petrov
%A P. V. Stognii
%A N. I. Khokhlov
%T Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 40-44
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a7/
%G ru
%F DANMA_2021_500_a7
I. B. Petrov; P. V. Stognii; N. I. Khokhlov. Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 40-44. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a7/

[1] Zhan Q., Sun Q., Ren Q., “A discontinuous Galerkin method for simulating the effects of arbitrary discrete fractures on elastic wave propagation”, Geophys. J. Int., 210:2 (2017), 1219–1230 | DOI | MR

[2] Petrov I., “Problems of modeling natural and anthropogenic processes in the arctic zone of the Russian Federation”, Math. Models Comput. Simul., 11 (2019), 226–246 | DOI | MR

[3] Petrov I.B., Muratov M.V., “The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article)”, Matem. Mod., 31:4 (2019), 33–56 | DOI | MR | Zbl

[4] Stognii P., Khokhlov N., Zhdanov M., “Novel approach to modelling the elastic waves in a cluster of subvertical fractures”, 81st EAGE Conference and Exhibition, 2019

[5] Schoenberg M., “Elastic wave behavior across linear slip interfaces”, J. Acoust. Soc. Amer., 68:5 (1980), 1516–1521 | DOI | Zbl

[6] Magomedov K.M., Kholodov A.S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[7] Novatskii V.K., Teoriya uprugosti, M., 1975

[8] Ivanov A.M., Khokhlov N.I., “Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries”, Comput. Res. Model., 10:5 (2018), 667–678 | DOI

[9] Golubev V.I., Petrov I.B., Khokhlov N.I., “Kompaktnye setochno-kharakteristicheskie skhemy povyshennogo poryadka tochnosti dlya trekhmernogo lineinogo uravneniya perenosa”, Matem. Modelirovanie, 28:2 (2016), 123–132 | MR

[10] Santos J.E., Picotti S., Carcione J., “Evaluation of the stiffness tensor of a fractured medium with harmonic experiments”, Comput. Methods Appl. Mech. Eng., 247–248 (2012), 130–145 | DOI | MR | Zbl

[11] Esipov D.V., Kuranakov D.S., Lapin V.N., Cherny S.G., “Mathematical models of hydraulic fracturing”, Comput. Technologies, 19:2 (2014), 33–61 | Zbl

[12] Howarth R., “Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy”, Energy and Emission Control Technologies, 3 (2015), 45–54 | DOI