Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a7, author = {I. B. Petrov and P. V. Stognii and N. I. Khokhlov}, title = {Mathematical modeling of {3D} dynamic processes near a fracture using the {Schoenberg} fracture model}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {40--44}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a7/} }
TY - JOUR AU - I. B. Petrov AU - P. V. Stognii AU - N. I. Khokhlov TI - Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 40 EP - 44 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a7/ LA - ru ID - DANMA_2021_500_a7 ER -
%0 Journal Article %A I. B. Petrov %A P. V. Stognii %A N. I. Khokhlov %T Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 40-44 %V 500 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a7/ %G ru %F DANMA_2021_500_a7
I. B. Petrov; P. V. Stognii; N. I. Khokhlov. Mathematical modeling of 3D dynamic processes near a fracture using the Schoenberg fracture model. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 40-44. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a7/
[1] Zhan Q., Sun Q., Ren Q., “A discontinuous Galerkin method for simulating the effects of arbitrary discrete fractures on elastic wave propagation”, Geophys. J. Int., 210:2 (2017), 1219–1230 | DOI | MR
[2] Petrov I., “Problems of modeling natural and anthropogenic processes in the arctic zone of the Russian Federation”, Math. Models Comput. Simul., 11 (2019), 226–246 | DOI | MR
[3] Petrov I.B., Muratov M.V., “The application of grid-characteristic method in solution of fractured formations exploration seismology direct problems (review article)”, Matem. Mod., 31:4 (2019), 33–56 | DOI | MR | Zbl
[4] Stognii P., Khokhlov N., Zhdanov M., “Novel approach to modelling the elastic waves in a cluster of subvertical fractures”, 81st EAGE Conference and Exhibition, 2019
[5] Schoenberg M., “Elastic wave behavior across linear slip interfaces”, J. Acoust. Soc. Amer., 68:5 (1980), 1516–1521 | DOI | Zbl
[6] Magomedov K.M., Kholodov A.S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR
[7] Novatskii V.K., Teoriya uprugosti, M., 1975
[8] Ivanov A.M., Khokhlov N.I., “Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries”, Comput. Res. Model., 10:5 (2018), 667–678 | DOI
[9] Golubev V.I., Petrov I.B., Khokhlov N.I., “Kompaktnye setochno-kharakteristicheskie skhemy povyshennogo poryadka tochnosti dlya trekhmernogo lineinogo uravneniya perenosa”, Matem. Modelirovanie, 28:2 (2016), 123–132 | MR
[10] Santos J.E., Picotti S., Carcione J., “Evaluation of the stiffness tensor of a fractured medium with harmonic experiments”, Comput. Methods Appl. Mech. Eng., 247–248 (2012), 130–145 | DOI | MR | Zbl
[11] Esipov D.V., Kuranakov D.S., Lapin V.N., Cherny S.G., “Mathematical models of hydraulic fracturing”, Comput. Technologies, 19:2 (2014), 33–61 | Zbl
[12] Howarth R., “Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy”, Energy and Emission Control Technologies, 3 (2015), 45–54 | DOI