Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a2, author = {A. S. Atkarskaya and A. Ya. Kanel-Belov and E. B. Plotkin and E. Rips}, title = {Axiomatic definition of small cancellation rings}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {16--22}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/} }
TY - JOUR AU - A. S. Atkarskaya AU - A. Ya. Kanel-Belov AU - E. B. Plotkin AU - E. Rips TI - Axiomatic definition of small cancellation rings JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 16 EP - 22 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/ LA - ru ID - DANMA_2021_500_a2 ER -
%0 Journal Article %A A. S. Atkarskaya %A A. Ya. Kanel-Belov %A E. B. Plotkin %A E. Rips %T Axiomatic definition of small cancellation rings %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 16-22 %V 500 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/ %G ru %F DANMA_2021_500_a2
A. S. Atkarskaya; A. Ya. Kanel-Belov; E. B. Plotkin; E. Rips. Axiomatic definition of small cancellation rings. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 16-22. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/
[1] Adian S.I., The Burnside problem and identities in groups, Nauka, M., 1975, 335 pp. | MR | Zbl
[2] Atkarskaya A., Kanel-Belov A., Plotkin E., Rips E., “Construction of a quotient ring of Z_2F in which a binomial 1+w is invertible using small cancellation methods”, Groups, Algebras, and Identities, Israel Mathematical Conferences Proceedings, Contemporary Mathematics, 726, AMS, 2019, 1–76 | DOI | MR | Zbl
[3] Atkarskaya A., Kanel-Belov A., Plotkin E., Rips E., Group-like Small Cancellation Theory for Rings, 2020, 273 pp., arXiv: 2010.02836v1 [math.RA]
[4] Coulon R., “On the geometry of Burnside quotients of torsion free hyperbolic groups”, Intern. J. Algebra and Computation, 24:3 (2014), 251–345 | DOI | MR | Zbl
[5] Gromov M., “Infinite groups as geometric objects”, Proc. Int. Congress Math. (Warsaw, 1983), v. 1, Amer. Math. Soc., 1984, 385–392 | MR
[6] Gromov M., “Hyperbolic Groups”, Essays in Group Theory, v. 8, ed. G.M. Gersten, MSRI Publ, N.Y., 1987, 75–263 | DOI | MR
[7] Guba V.S., “Konechno-porozhdennaya polnaya gruppa”, Izvestiya AN SSSR. Ser. Matem., 50:5 (1986), 883–924 | MR
[8] Ivanov S., “The free Burnside groups of sufficiently large exponents”, Internat. J. Algebra Comput., 4:1-2 (1994), ii+308 pp. | MR
[9] Lenagan T., Smoktunowicz A., “An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension”, J. Amer. Math. Soc., 20:4 (2007), 989–1001 | DOI | MR | Zbl
[10] Lyndon R., Schupp P., Combinatorial group theory, Reprint of the 1977 edition, Classics in Mathematics, Springer-Verlag, B., 2001 | DOI | MR | Zbl
[11] Lysenok I.G., “Beskonechnye bernsaidovy gruppy chetnogo perioda”, Izv. RAN. Ser. matem., 60:3 (1996), 3–224 | DOI | MR | Zbl
[12] Novikov P.S., Adyan S.I., “O beskonechnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 ; 2, 521–524 ; 3, 709–731 | MR
[13] Olshanskii A.Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR
[14] Olshanskii A.Yu., “Beskonechnaya gruppa s podgruppami prostykh poryadkov”, Izv. AN SSSR. Ser. matem., 44:2 (1980), 309–321 | MR
[15] Olshanskii A.Yu., “Gruppy ogranichennogo perioda s podgruppami prostogo poryadka”, Algebra i logika, 21:5 (1982), 553–618 | MR
[16] Rips E., “Generalized small cancellation theory and applications I. The word problem”, Israel J. Math., 41 (1982), 1–146 | DOI | MR | Zbl
[17] Sapir M., Combinatorial algebra: syntax, Springer Monographs in Mathematics, Springer, Cham, 2014, 355 pp. | DOI | MR | Zbl
[18] Smoktunowicz A., “A simple nil ring exists”, Communications Algebra, 2002, no. 1, 27–59 | DOI | MR | Zbl