Axiomatic definition of small cancellation rings
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 16-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.
Keywords: small cancellation ring, turn, multi-turn, defining relations in rings, small cancellation group, group algebra.
@article{DANMA_2021_500_a2,
     author = {A. S. Atkarskaya and A. Ya. Kanel-Belov and E. B. Plotkin and E. Rips},
     title = {Axiomatic definition of small cancellation rings},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/}
}
TY  - JOUR
AU  - A. S. Atkarskaya
AU  - A. Ya. Kanel-Belov
AU  - E. B. Plotkin
AU  - E. Rips
TI  - Axiomatic definition of small cancellation rings
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 16
EP  - 22
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/
LA  - ru
ID  - DANMA_2021_500_a2
ER  - 
%0 Journal Article
%A A. S. Atkarskaya
%A A. Ya. Kanel-Belov
%A E. B. Plotkin
%A E. Rips
%T Axiomatic definition of small cancellation rings
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 16-22
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/
%G ru
%F DANMA_2021_500_a2
A. S. Atkarskaya; A. Ya. Kanel-Belov; E. B. Plotkin; E. Rips. Axiomatic definition of small cancellation rings. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 16-22. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/

[1] Adian S.I., The Burnside problem and identities in groups, Nauka, M., 1975, 335 pp. | MR | Zbl

[2] Atkarskaya A., Kanel-Belov A., Plotkin E., Rips E., “Construction of a quotient ring of Z_2F in which a binomial 1+w is invertible using small cancellation methods”, Groups, Algebras, and Identities, Israel Mathematical Conferences Proceedings, Contemporary Mathematics, 726, AMS, 2019, 1–76 | DOI | MR | Zbl

[3] Atkarskaya A., Kanel-Belov A., Plotkin E., Rips E., Group-like Small Cancellation Theory for Rings, 2020, 273 pp., arXiv: 2010.02836v1 [math.RA]

[4] Coulon R., “On the geometry of Burnside quotients of torsion free hyperbolic groups”, Intern. J. Algebra and Computation, 24:3 (2014), 251–345 | DOI | MR | Zbl

[5] Gromov M., “Infinite groups as geometric objects”, Proc. Int. Congress Math. (Warsaw, 1983), v. 1, Amer. Math. Soc., 1984, 385–392 | MR

[6] Gromov M., “Hyperbolic Groups”, Essays in Group Theory, v. 8, ed. G.M. Gersten, MSRI Publ, N.Y., 1987, 75–263 | DOI | MR

[7] Guba V.S., “Konechno-porozhdennaya polnaya gruppa”, Izvestiya AN SSSR. Ser. Matem., 50:5 (1986), 883–924 | MR

[8] Ivanov S., “The free Burnside groups of sufficiently large exponents”, Internat. J. Algebra Comput., 4:1-2 (1994), ii+308 pp. | MR

[9] Lenagan T., Smoktunowicz A., “An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension”, J. Amer. Math. Soc., 20:4 (2007), 989–1001 | DOI | MR | Zbl

[10] Lyndon R., Schupp P., Combinatorial group theory, Reprint of the 1977 edition, Classics in Mathematics, Springer-Verlag, B., 2001 | DOI | MR | Zbl

[11] Lysenok I.G., “Beskonechnye bernsaidovy gruppy chetnogo perioda”, Izv. RAN. Ser. matem., 60:3 (1996), 3–224 | DOI | MR | Zbl

[12] Novikov P.S., Adyan S.I., “O beskonechnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 ; 2, 521–524 ; 3, 709–731 | MR

[13] Olshanskii A.Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[14] Olshanskii A.Yu., “Beskonechnaya gruppa s podgruppami prostykh poryadkov”, Izv. AN SSSR. Ser. matem., 44:2 (1980), 309–321 | MR

[15] Olshanskii A.Yu., “Gruppy ogranichennogo perioda s podgruppami prostogo poryadka”, Algebra i logika, 21:5 (1982), 553–618 | MR

[16] Rips E., “Generalized small cancellation theory and applications I. The word problem”, Israel J. Math., 41 (1982), 1–146 | DOI | MR | Zbl

[17] Sapir M., Combinatorial algebra: syntax, Springer Monographs in Mathematics, Springer, Cham, 2014, 355 pp. | DOI | MR | Zbl

[18] Smoktunowicz A., “A simple nil ring exists”, Communications Algebra, 2002, no. 1, 27–59 | DOI | MR | Zbl