Axiomatic definition of small cancellation rings
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 16-22

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three specific axioms for corresponding defining relations that provide the small cancellation properties of the obtained ring. We show that this ring is nontrivial. It is called a small cancellation ring.
Keywords: small cancellation ring, turn, multi-turn, defining relations in rings, small cancellation group, group algebra.
@article{DANMA_2021_500_a2,
     author = {A. S. Atkarskaya and A. Ya. Kanel-Belov and E. B. Plotkin and E. Rips},
     title = {Axiomatic definition of small cancellation rings},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/}
}
TY  - JOUR
AU  - A. S. Atkarskaya
AU  - A. Ya. Kanel-Belov
AU  - E. B. Plotkin
AU  - E. Rips
TI  - Axiomatic definition of small cancellation rings
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 16
EP  - 22
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/
LA  - ru
ID  - DANMA_2021_500_a2
ER  - 
%0 Journal Article
%A A. S. Atkarskaya
%A A. Ya. Kanel-Belov
%A E. B. Plotkin
%A E. Rips
%T Axiomatic definition of small cancellation rings
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 16-22
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/
%G ru
%F DANMA_2021_500_a2
A. S. Atkarskaya; A. Ya. Kanel-Belov; E. B. Plotkin; E. Rips. Axiomatic definition of small cancellation rings. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 16-22. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a2/