Anisotropy-based approach to communication tuning for a time-varying sensor network system
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 107-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The communication graph design problem for a linear discrete time-varying sensor network system is considered. The design goal is to minimize the upper bound for the anisotropic norm of the input-to-estimation error system. The sensors are supposed to be objects with dropouts of given probability values. Exogenous disturbances are considered to be sequences of random vectors with bounded anisotropy of sequence fragments. The tuning of the adjacency matrix with a fixed estimation model is reduced to a convex optimization problem.
Keywords: anisotropy-based theory, multiplicative noise, sensor networks, dropouts, estimation, time-varying systems.
@article{DANMA_2021_500_a19,
     author = {A. V. Yurchenkov and A. Yu. Kustov},
     title = {Anisotropy-based approach to communication tuning for a time-varying sensor network system},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {107--111},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a19/}
}
TY  - JOUR
AU  - A. V. Yurchenkov
AU  - A. Yu. Kustov
TI  - Anisotropy-based approach to communication tuning for a time-varying sensor network system
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 107
EP  - 111
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a19/
LA  - ru
ID  - DANMA_2021_500_a19
ER  - 
%0 Journal Article
%A A. V. Yurchenkov
%A A. Yu. Kustov
%T Anisotropy-based approach to communication tuning for a time-varying sensor network system
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 107-111
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a19/
%G ru
%F DANMA_2021_500_a19
A. V. Yurchenkov; A. Yu. Kustov. Anisotropy-based approach to communication tuning for a time-varying sensor network system. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 107-111. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a19/

[1] K. Whitehouse, D. Culler, “Calibration as Parameter Estimation in Sensor Networks”, Proc. of the 1st ACM Int. workshop on Wireless sensor networks and applications, 2002, 59–67 | DOI

[2] S. K. Wahba, S. Dandamudi, A. R. Dalton, J. O. Hallstrom, “NePTune: Optimizing Sensor Networks”, Proc. of 17th Int. Conf. on Comp. Comm. and Networks, 2008, 1–7

[3] P. Corsini, P. Masci, A. Vecchio, “Configuration and Tuning of Sensor Network Applications through Virtual Sensors”, Fourth Ann. IEEE Int. Conf. on Pervasive Computing and Communications Workshops (PERCOMW'06), 2006, 5–32

[4] T. Becnel, T. Sayahi, K. Kelly, P. E. Gaillardon, “A Recursive Approach to Partially Blind Calibration of a Pollution Sensor Network”, IEEE Int. Conf. on Embedded Software and Systems (ICESS), 2019, 1–8

[5] M. S. Stankovic, S. S. Stankovic, K. H. Johansson, “Asynchronous Distributed Blind Calibration of Sensor Networks Under Noisy Measurements”, IEEE Transactions on Control of Network Systems, 5:1 (2018), 571–582 | DOI | MR | Zbl

[6] A. V. Semyonov, I. G. Vladimirov, A. P. Kurdyukov, “Stochastic Approach to H?-optimization”, Proc. of the 33th CDC, 1994, 2249–2250

[7] I. G. Vladimirov, A. P. Kurdyukov, A. V. Semenov, “Anizotropiya signalov i entropiya lineinykh statsionarnykh sistem”, DAN, 342:4 (1995), 583–585 | MR | Zbl

[8] I. G. Vladimirov, A. P. Kurdjukov, A. V. Semyonov, “On Computing the Anisotropic Norm of Linear Discrete-time-invariant Systems”, Proc. 13th IFAC World Congr., 1994, 179–184

[9] A. Yu. Kustov, “State-Space Formulas for Anisotropic Norm of Linear Discrete Time Varying Stochastic System”, Proc. 15th Int. Conf. on Electr. Eng., Comp. Science and Autom. Control, 2018, 1–6

[10] A. V. Yurchenkov, A. Yu. Kustov, A. P. Kurdyukov, “Usloviya ogranichennosti anizotropiinoi normy sistemy s multiplikativnymi shumami”, DAN, 467:4 (2016), 396–399 | MR | Zbl

[11] I. R. Belov, A. V. Yurchenkov, A. Yu. Kustov, “Anisotropy-Based Bounded Real Lemma for Multiplicative Noise Systems: the Finite Horizon Case”, Proc. of the 27th Med. Conf. on Contr. and Aut., 2019, 148–152

[12] A. Yu. Kustov, A. V. Yurchenkov, “Finite-horizon Anisotropic Estimator Design in Sensor Networks”, 59th IEEE Conference on Decision and Control, 2020, 4330–4335

[13] A. Yu. Kustov, A. V. Yurchenkov, “Finite-horizon Anisotropy-based Estimation with Packet Dropouts”, IFAC-PapersOnLine, 53:2 (2020), 4516–4520 | DOI

[14] V. N. Timin, M. M. Chaikovskii, A. P. Kurdyukov, “Reshenie zadachi anizotropiinoi suboptimalnoi filtratsii metodom vypukloi optimizatsii”, DAN, 444:6 (2012), 612–615 | MR | Zbl

[15] V. N. Timin, A. P. Kurdyukov, “Anizotropiinaya mnogokriterialnaya nestatsionarnaya filtratsiya na konechnom gorizonte”, DAN, 464:3 (2015), 279–283 | MR | Zbl