Attraction for mechanical systems with friction
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 102-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior of systems with Coulomb friction represented as Lagrange’s equations of the second kind is investigated. Lyapunov’s direct method is used in combination with the method of limiting equations, which goes back to the works by G.R. Sell (1967) and Z. Artstein (1977, 1978) on topological dynamics of nonautonomous systems. The results generalize LaSalle’s principle of invariance.
Keywords: Lyapunov’s functions, method of limiting equations, limiting differential inclusion, invariance principle, attraction, dry friction, Lagrange equation of the second kind.
@article{DANMA_2021_500_a18,
     author = {I. A. Finogenko},
     title = {Attraction for mechanical systems with friction},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {102--106},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a18/}
}
TY  - JOUR
AU  - I. A. Finogenko
TI  - Attraction for mechanical systems with friction
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 102
EP  - 106
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a18/
LA  - ru
ID  - DANMA_2021_500_a18
ER  - 
%0 Journal Article
%A I. A. Finogenko
%T Attraction for mechanical systems with friction
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 102-106
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a18/
%G ru
%F DANMA_2021_500_a18
I. A. Finogenko. Attraction for mechanical systems with friction. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 102-106. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a18/

[1] V. M. Matrosov, Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001

[2] A. F. Filippov, Differentsialnye uravneniya s razryvnymi pravymi chastyami, Nauka, M., 1985

[3] I. A. Finogenko, “Printsip invariantnosti dlya neavtonomnykh differentsialnykh uravnenii s razryvnymi pravymi chastyami”, Sibirskii matematicheskii zhurnal, 57:4 (2016), 913–927 | MR | Zbl

[4] E. A. Barbashin, Funktsii Lyapunova, Nauka, M., 1970 | MR

[5] N. Rush, M. Abets, M. Lalua, Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980 | MR

[6] G. R. Sell, “Nonautonomous differential equations and topological dynamics. 1, 2”, Trans. Amer. Vath. Soc., 22 (1967), 241–283 | MR

[7] Z. Artstein, “Topological dynamics of an ordinary differential equation”, J. Differ. Equations, 23 (1977), 216–243 | DOI | MR

[8] Z. Artstein, “Uniform asymptotic stability via limiting equations”, J. Differ. Equations, 27 (1978), 172–189 | DOI | MR | Zbl

[9] A. A. Martynyuk, D. Kato, A. A. Shestakov, Ustoichivost dvizheniya: metod predelnykh uravnenii, Naukova dumka, Kiev, 1990 | MR

[10] A. S. Andreev, Ustoichivost neavtonomnykh funktsionalno-differentsialnykh uravnenii, UlGU, Ulyanovsk, 2005

[11] I. A. Finogenko, “Predelnye differentsialnye vklyucheniya i printsip invariantnosti neavtonomnykh sistem”, Sibirskii matematicheskii zhurnal, 55:2 (2014), 454–471 | MR | Zbl

[12] S. N. Vassilyev, “On the Implication of Properties of Related Systems: a Method for Obtaining Implication Conditions and Application Examples”, Journal of Computer and Systems Sciences International, 59:4 (2020), 479–493 | DOI | MR | Zbl