Sub-Riemannian Engel sphere
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 97-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the intersection of the sub-Riemannian sphere on the Engel group with a two-dimensional invariant set of discrete symmetries is described: regularity, analytic properties, exp-log category, Whitney stratification, multiplicity of points, characterization in terms of abnormal trajectories, conjugate points and Maxwell points, and explicit expressions for the sub-Riemannian distance to singular points.
Keywords: Engel group, sub-Riemannian geometry, sub-Riemannian sphere.
@article{DANMA_2021_500_a17,
     author = {Yu. L. Sachkov and A. Yu. Popov},
     title = {Sub-Riemannian {Engel} sphere},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {97--101},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a17/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
AU  - A. Yu. Popov
TI  - Sub-Riemannian Engel sphere
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 97
EP  - 101
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a17/
LA  - ru
ID  - DANMA_2021_500_a17
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%A A. Yu. Popov
%T Sub-Riemannian Engel sphere
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 97-101
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a17/
%G ru
%F DANMA_2021_500_a17
Yu. L. Sachkov; A. Yu. Popov. Sub-Riemannian Engel sphere. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 97-101. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a17/

[1] R. Montgomery, A tour of subriemannnian geometries, their geodesics and applications, Amer. Math. Soc., 2002 | MR

[2] A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian viewpoint, Cambridge University Press, Cambridge, 2019 | MR

[3] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki: Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1987, 5–85

[4] A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, J. ESAIM: Control, Optimisation and Calculus of Variations, 2 (1997), 377–448 | DOI | MR | Zbl

[5] V. N. Berestovskii, I. A. Zubareva, “Formy sfer spetsialnykh negolonomnykh levoinvariantnykh vnutrennikh metrik na nekotorykh gruppakh Li”, Sib. matem. zhurnal, 42:4 (2001), 731–748 | MR | Zbl

[6] U. Boscain, F. Rossi, “Invariant Carnot-Caratheodory metrics on S3, $SO(3)$, $SL(2)$ and Lens Spaces”, SIAM Journal on Control and Optimization, 47 (2008), 1851–1878 | DOI | MR | Zbl

[7] Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM: COCV, 17 (2011), 293–321 | DOI | MR | Zbl

[8] Y. A. Butt, Yu. L. Sachkov, A. I. Bhatti, “Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group SH(2)”, Journal of Dynamical and Control Systems, 23 (2017), 155–195 | DOI | MR | Zbl

[9] A. A. Ardentov, Yu. L. Sachkov, “Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group”, Regular and Chaotic Dynamics, 22:8, December (2017), 909–936 | DOI | MR | Zbl

[10] M. Goreski, R. Makferson, Stratifitsirovannaya teoriya Morsa, Mir, M., 1991

[11] A. Agrachev, “Compactness for sub-Riemannian length-minimizers and subanalyticity”, Rend. Semin. Mat. Torino, 56 (1998), 1–12 | MR | Zbl

[12] A. Agrachev, A. Sarychev, “Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity”, ESAIM: COCV, 4 (1999), 377–403 | DOI | MR | Zbl

[13] B. Bonnard, E. Trelat, “On the role of abnormal minimizers in sub-Riemannian geometry”, Annales de la faculte des sciences de Toulouse 6e serie, 10:3 (2001), 405–491 | MR | Zbl