Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a17, author = {Yu. L. Sachkov and A. Yu. Popov}, title = {Sub-Riemannian {Engel} sphere}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {97--101}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a17/} }
TY - JOUR AU - Yu. L. Sachkov AU - A. Yu. Popov TI - Sub-Riemannian Engel sphere JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 97 EP - 101 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a17/ LA - ru ID - DANMA_2021_500_a17 ER -
Yu. L. Sachkov; A. Yu. Popov. Sub-Riemannian Engel sphere. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 97-101. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a17/
[1] R. Montgomery, A tour of subriemannnian geometries, their geodesics and applications, Amer. Math. Soc., 2002 | MR
[2] A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian viewpoint, Cambridge University Press, Cambridge, 2019 | MR
[3] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki: Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1987, 5–85
[4] A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, J. ESAIM: Control, Optimisation and Calculus of Variations, 2 (1997), 377–448 | DOI | MR | Zbl
[5] V. N. Berestovskii, I. A. Zubareva, “Formy sfer spetsialnykh negolonomnykh levoinvariantnykh vnutrennikh metrik na nekotorykh gruppakh Li”, Sib. matem. zhurnal, 42:4 (2001), 731–748 | MR | Zbl
[6] U. Boscain, F. Rossi, “Invariant Carnot-Caratheodory metrics on S3, $SO(3)$, $SL(2)$ and Lens Spaces”, SIAM Journal on Control and Optimization, 47 (2008), 1851–1878 | DOI | MR | Zbl
[7] Yu. L. Sachkov, “Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane”, ESAIM: COCV, 17 (2011), 293–321 | DOI | MR | Zbl
[8] Y. A. Butt, Yu. L. Sachkov, A. I. Bhatti, “Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group SH(2)”, Journal of Dynamical and Control Systems, 23 (2017), 155–195 | DOI | MR | Zbl
[9] A. A. Ardentov, Yu. L. Sachkov, “Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group”, Regular and Chaotic Dynamics, 22:8, December (2017), 909–936 | DOI | MR | Zbl
[10] M. Goreski, R. Makferson, Stratifitsirovannaya teoriya Morsa, Mir, M., 1991
[11] A. Agrachev, “Compactness for sub-Riemannian length-minimizers and subanalyticity”, Rend. Semin. Mat. Torino, 56 (1998), 1–12 | MR | Zbl
[12] A. Agrachev, A. Sarychev, “Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity”, ESAIM: COCV, 4 (1999), 377–403 | DOI | MR | Zbl
[13] B. Bonnard, E. Trelat, “On the role of abnormal minimizers in sub-Riemannian geometry”, Annales de la faculte des sciences de Toulouse 6e serie, 10:3 (2001), 405–491 | MR | Zbl