Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a16, author = {S. V. Polyakov and T. A. Kudryashova and N. I. Tarasov}, title = {Application of the multiscale approach to simulation of air sorbent filtration}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {92--96}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a16/} }
TY - JOUR AU - S. V. Polyakov AU - T. A. Kudryashova AU - N. I. Tarasov TI - Application of the multiscale approach to simulation of air sorbent filtration JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 92 EP - 96 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a16/ LA - ru ID - DANMA_2021_500_a16 ER -
%0 Journal Article %A S. V. Polyakov %A T. A. Kudryashova %A N. I. Tarasov %T Application of the multiscale approach to simulation of air sorbent filtration %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 92-96 %V 500 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a16/ %G ru %F DANMA_2021_500_a16
S. V. Polyakov; T. A. Kudryashova; N. I. Tarasov. Application of the multiscale approach to simulation of air sorbent filtration. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 92-96. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a16/
[1] Kh. A. Dzhuvelikyan, I. V. Cherepukhina, “Sovremennye problemy prirodnogo i tekhnogennogo zagryazneniya okruzhayuschei sredy”, Zhivye i biokosnye sistemy, 2017, no. 22 http://www.jbks.ru/archive/issue-22/article-8
[2] E. A. Shtokman, Ochistka vozdukha, ASV, M., 2007, 313 pp.
[3] Xu Zh., Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms, Springer, B.–Heidelberg, 2014, 871 pp.
[4] T. Sparks, G. Chase, Filters and Filtration Handbook, Sixth Edition, Butterworth-Heinemann, 2015, 431 pp.
[5] N. F. Gladyshev, Gladysheva T.G, S. I. Dvoretskii, Sistemy i sredstva regeneratsii i ochistki vozdukha obitaemykh germetichnykh ob'ektov, Izdatelskii dom «Spektr», M., 2016, 204 pp. | MR
[6] T. G. Elizarova, Quasi-Gas Dynamic Equations, Springer-Verlag, B.–Heidelberg, 2009, 286 pp. | MR | Zbl
[7] T. G. Elizarova, A. A. Zlotnik, B. N. Chetverushkin, “On quasi-gasdynamic and quasi-hydrodynamic equations for binary gas mixtures”, Doklady Mathematics, 90:3 (2014), 719–723 | DOI | MR | Zbl
[8] S. V. Polyakov, T. A. Kudryashova, N. I. Tarasov, “Metod dvoinogo potentsiala dlya modelirovaniya vnutrennego techeniya vyazkoi neszhimaemoi zhidkosti”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 494:1 (2020), 73–76
[9] Yu. N. Karamzin, T. A. Kudryashova, S. V. Polyakov, “On a class of flux schemes for convection-diffusion equations”, Computational Mathematics and Information Technologies, 1:2 (2017), 169–179 | DOI | MR
[10] V. O. Podryga, E. V. Vikhrov, S. V. Polyakov, “Molekulyarno-dinamicheskii raschet koeffitsienta diffuzii gazov na primere argona, azota, vodoroda, kisloroda, metana i uglekislogo gaza”, Preprinty IPM im. M.V. Keldysha, 2019, 96, 24 pp.
[11] N. I. Tarasov, S. V. Polyakov, Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, D. V. Puzyrkov, “Modelirovanie potoka vyazkoi neszhimaemoi zhidkosti s pomoschyu kvazigidrodinamicheskoi sistemy uravnenii”, Matem. modelirovanie, 31:12 (2019), 33–43 | DOI
[12] V. P. Ilin, Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2000, 345 pp.
[13] R. Eymard, T. R. Gallouet, R. Herbin, “The finite volume method”, Handbook of Numerical Analysis, 7, Elsevier, 2000, 713–1020 | MR | Zbl
[14] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002, 558 pp. | MR | Zbl