Application of the multiscale approach to simulation of air sorbent filtration
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 92-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of numerical modeling air filtration by granular sorbents is considered. The task of cleaning air is relevant for industrial purification from harmful products of manufacturing, as well as for household cleaning air. Mathematical modeling can be useful for both development and modernization of filters and for optimizing maintenance. A multiscale approach is proposed for solving a compound filtration problem in real geometry conditions. It is based on the method of splitting into physical processes and space-time scales. The basic models on the macroscale are the equations of quasi-hydro- and quasi-gasdynamics and convection–diffusion equations, while, on the microscale, models of particles, including molecular dynamics, are used. The numerical implementation of the former is based on the finite-volume method on unstructured meshes, and the latter are implemented using the Verlet scheme and its generalizations. An analysis of the results of numerical experiments confirmed their reliability and theoretical validity.
Keywords: air purification, multiscale mathematical models, numerical methods, ecology, filtration, sorbents.
@article{DANMA_2021_500_a16,
     author = {S. V. Polyakov and T. A. Kudryashova and N. I. Tarasov},
     title = {Application of the multiscale approach to simulation of air sorbent filtration},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {92--96},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a16/}
}
TY  - JOUR
AU  - S. V. Polyakov
AU  - T. A. Kudryashova
AU  - N. I. Tarasov
TI  - Application of the multiscale approach to simulation of air sorbent filtration
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 92
EP  - 96
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a16/
LA  - ru
ID  - DANMA_2021_500_a16
ER  - 
%0 Journal Article
%A S. V. Polyakov
%A T. A. Kudryashova
%A N. I. Tarasov
%T Application of the multiscale approach to simulation of air sorbent filtration
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 92-96
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a16/
%G ru
%F DANMA_2021_500_a16
S. V. Polyakov; T. A. Kudryashova; N. I. Tarasov. Application of the multiscale approach to simulation of air sorbent filtration. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 92-96. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a16/

[1] Kh. A. Dzhuvelikyan, I. V. Cherepukhina, “Sovremennye problemy prirodnogo i tekhnogennogo zagryazneniya okruzhayuschei sredy”, Zhivye i biokosnye sistemy, 2017, no. 22 http://www.jbks.ru/archive/issue-22/article-8

[2] E. A. Shtokman, Ochistka vozdukha, ASV, M., 2007, 313 pp.

[3] Xu Zh., Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms, Springer, B.–Heidelberg, 2014, 871 pp.

[4] T. Sparks, G. Chase, Filters and Filtration Handbook, Sixth Edition, Butterworth-Heinemann, 2015, 431 pp.

[5] N. F. Gladyshev, Gladysheva T.G, S. I. Dvoretskii, Sistemy i sredstva regeneratsii i ochistki vozdukha obitaemykh germetichnykh ob'ektov, Izdatelskii dom «Spektr», M., 2016, 204 pp. | MR

[6] T. G. Elizarova, Quasi-Gas Dynamic Equations, Springer-Verlag, B.–Heidelberg, 2009, 286 pp. | MR | Zbl

[7] T. G. Elizarova, A. A. Zlotnik, B. N. Chetverushkin, “On quasi-gasdynamic and quasi-hydrodynamic equations for binary gas mixtures”, Doklady Mathematics, 90:3 (2014), 719–723 | DOI | MR | Zbl

[8] S. V. Polyakov, T. A. Kudryashova, N. I. Tarasov, “Metod dvoinogo potentsiala dlya modelirovaniya vnutrennego techeniya vyazkoi neszhimaemoi zhidkosti”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 494:1 (2020), 73–76

[9] Yu. N. Karamzin, T. A. Kudryashova, S. V. Polyakov, “On a class of flux schemes for convection-diffusion equations”, Computational Mathematics and Information Technologies, 1:2 (2017), 169–179 | DOI | MR

[10] V. O. Podryga, E. V. Vikhrov, S. V. Polyakov, “Molekulyarno-dinamicheskii raschet koeffitsienta diffuzii gazov na primere argona, azota, vodoroda, kisloroda, metana i uglekislogo gaza”, Preprinty IPM im. M.V. Keldysha, 2019, 96, 24 pp.

[11] N. I. Tarasov, S. V. Polyakov, Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, D. V. Puzyrkov, “Modelirovanie potoka vyazkoi neszhimaemoi zhidkosti s pomoschyu kvazigidrodinamicheskoi sistemy uravnenii”, Matem. modelirovanie, 31:12 (2019), 33–43 | DOI

[12] V. P. Ilin, Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2000, 345 pp.

[13] R. Eymard, T. R. Gallouet, R. Herbin, “The finite volume method”, Handbook of Numerical Analysis, 7, Elsevier, 2000, 713–1020 | MR | Zbl

[14] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002, 558 pp. | MR | Zbl