The second boundary value problem for differential-difference equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 74-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the second boundary value problem for a second-order differential-difference equation with variable coefficients on the interval $(0,d)$. It was obtained the necessary and sufficient condition for the existence of a generalized solution. It was proved that, if the right-hand side of the equation is orthogonal in $L_2(0,d)$ to some functions, then a generalized solution from the Sobolev space $W^1_2(0,d)$ belongs to the space $W_2^2(0,d)$.
Keywords: differential–difference equations, generalized solutions, boundary value problem.
@article{DANMA_2021_500_a13,
     author = {A. L. Skubachevskii and N. O. Ivanov},
     title = {The second boundary value problem for differential-difference equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {74--77},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a13/}
}
TY  - JOUR
AU  - A. L. Skubachevskii
AU  - N. O. Ivanov
TI  - The second boundary value problem for differential-difference equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 74
EP  - 77
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a13/
LA  - ru
ID  - DANMA_2021_500_a13
ER  - 
%0 Journal Article
%A A. L. Skubachevskii
%A N. O. Ivanov
%T The second boundary value problem for differential-difference equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 74-77
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a13/
%G ru
%F DANMA_2021_500_a13
A. L. Skubachevskii; N. O. Ivanov. The second boundary value problem for differential-difference equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 74-77. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a13/

[1] Kamenskii G.A., Myshkis A.D., “Postanovka kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimisya argumentami v starshikh chlenakh”, Differents. uravneniya, 10:3 (1974), 409–418 | Zbl

[2] Kamenskii A.G., “Kraevye zadachi dlya uravnenii s formalno simmetrichnymi differentsialno-raznostnymi operatorami”, Differents. uravneniya, 10:5 (1976), 815–824

[3] Kamenskii G.A., Myshkis A.D., Skubachevskii A.L., “O gladkikh resheniyakh kraevoi zadachi dlya differentsialno-raznostnogo uravneniya neitralnogo tipa”, Ukr. matem. zhurnal, 37:5 (1985), 581–585 | MR

[4] Skubachevskii A.L., Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel-Boston-Berlin, 1997, 298 pp. | MR | Zbl

[5] Neverova D.A., Skubachevskii A.L., “O klassicheskikh i obobschennykh resheniyakh kraevykh zadach dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, Matem. zametki, 94:5 (2013), 702–719 | DOI | MR | Zbl

[6] Neverova D.A., “Generalized and classical solutions to the second and third boundary-value problem for differential-difference equations”, Functional Differential Equations, 21 (2014), 47–65 | MR | Zbl

[7] Osipov Yu.S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | Zbl

[8] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 475 pp.

[9] Kryazhimskii A.V., Maksimov V.I., Osipov Yu.S., “O pozitsionnom modelirovanii v dinamicheskikh sistemakh”, Prikl. mat. mekh., 47:6 (1983), 883–890 | MR

[10] Skubachevskii A.L., “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, DAN, 335:2 (1994), 157–160 | Zbl