The second boundary value problem for differential-difference equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 74-77

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the second boundary value problem for a second-order differential-difference equation with variable coefficients on the interval $(0,d)$. It was obtained the necessary and sufficient condition for the existence of a generalized solution. It was proved that, if the right-hand side of the equation is orthogonal in $L_2(0,d)$ to some functions, then a generalized solution from the Sobolev space $W^1_2(0,d)$ belongs to the space $W_2^2(0,d)$.
Keywords: differential–difference equations, generalized solutions, boundary value problem.
@article{DANMA_2021_500_a13,
     author = {A. L. Skubachevskii and N. O. Ivanov},
     title = {The second boundary value problem for differential-difference equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {74--77},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a13/}
}
TY  - JOUR
AU  - A. L. Skubachevskii
AU  - N. O. Ivanov
TI  - The second boundary value problem for differential-difference equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 74
EP  - 77
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a13/
LA  - ru
ID  - DANMA_2021_500_a13
ER  - 
%0 Journal Article
%A A. L. Skubachevskii
%A N. O. Ivanov
%T The second boundary value problem for differential-difference equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 74-77
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a13/
%G ru
%F DANMA_2021_500_a13
A. L. Skubachevskii; N. O. Ivanov. The second boundary value problem for differential-difference equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 74-77. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a13/