Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_500_a10, author = {V. Yu. Protasov and T. I. Zaitseva}, title = {Self-affine tiling of polyhedra}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {55--61}, publisher = {mathdoc}, volume = {500}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a10/} }
TY - JOUR AU - V. Yu. Protasov AU - T. I. Zaitseva TI - Self-affine tiling of polyhedra JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 55 EP - 61 VL - 500 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a10/ LA - ru ID - DANMA_2021_500_a10 ER -
V. Yu. Protasov; T. I. Zaitseva. Self-affine tiling of polyhedra. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 55-61. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a10/
[1] Cabrelli C.A., Heil C., Molter U.M., “Self-similarity and multiwavelets in higher dimensions”, Memoirs Amer. Math. Soc., 170, no. 807, 2004 | DOI | MR
[2] Gröchenig K., Madych W.R., “Multiresolution analysis, Haar bases, and self-similar tilings of ${{\mathbb{R}}^{n}}$”, IEEE Trans. Inform. Theory, 38:2 (1992), 556–568 | DOI | MR | Zbl
[3] Gröchenig K., Haas A., “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170 | DOI | MR | Zbl
[4] Krivoshein A., Protasov V.Yu., Skopina M.A., Multivariate wavelets frames, Springer, 2016 | MR
[5] Long C.T., “Addition theorems for sets of integers”, Pacific J. Math., 23:1 (1967), 107–112 | DOI | MR | Zbl
[6] Lagarias J., Wang Y., “Haar bases for ${{L}_{2}}({{\mathbb{R}}^{n}})$ and algebraic number theory”, J. Number Theory, 57:1 (1996), 181–197 | DOI | MR | Zbl
[7] Lagarias J., Wang Y., “Integral self-affine tiles in ${{\mathbb{R}}^{n}}$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102 | DOI | MR | Zbl
[8] Nathanson M.B., “Complementing sets of n-tuples of integers”, Proceedings of the American Mathematical Society, 34:1 (1972), 71–72 | MR | Zbl
[9] Nishio K., Miyazaki T., “Describing polyhedral tilings and higher dimensional polytopes by sequence of their two-dimensional components”, Sci Rep., 7 (2017), 40269 | DOI | MR
[10] Novikov I., Protasov V.Yu., Skopina M.A., Wavelets theory, Translations Mathematical Monographs, AMS, 2011 | DOI | MR
[11] Wojtaszczyk P., A Mathematical Introduction to Wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge–New York–Melbourne–Madrid, 1997 | MR | Zbl
[12] Yang Y.-M., Zhang Y., “Tilings of convex polyhedral cones and topological properties of self-affine tiles”, Discrete Computational Geometry, 2020 | DOI | MR
[13] Zaitseva T., “Prostye taily i attraktory”, Matem. sb., 211:9 (2020), 24–59 | DOI | MR | Zbl