Self-affine tiling of polyhedra
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 55-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a complete classification of polyhedral sets (unions of finitely many convex polyhedra) that admit self-affine tilings, i.e., partitions into parallel shifts of one set that is affinely similar to the initial one. In every dimension, there exist infinitely many nonequivalent polyhedral sets possessing this property. Under an additional assumption that the affine similarity is defined by an integer matrix and by integer shifts (“digits”) from different quotient classes with respect to this matrix, the only polyhedral set of this kind is a parallelepiped. Applications to multivariate wavelets and to Haar systems are discussed.
Keywords: tiling, self-affinity, tile, polyhedron, integer attractor, cone, Haar system.
@article{DANMA_2021_500_a10,
     author = {V. Yu. Protasov and T. I. Zaitseva},
     title = {Self-affine tiling of polyhedra},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {55--61},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_500_a10/}
}
TY  - JOUR
AU  - V. Yu. Protasov
AU  - T. I. Zaitseva
TI  - Self-affine tiling of polyhedra
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 55
EP  - 61
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_500_a10/
LA  - ru
ID  - DANMA_2021_500_a10
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%A T. I. Zaitseva
%T Self-affine tiling of polyhedra
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 55-61
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_500_a10/
%G ru
%F DANMA_2021_500_a10
V. Yu. Protasov; T. I. Zaitseva. Self-affine tiling of polyhedra. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 500 (2021), pp. 55-61. http://geodesic.mathdoc.fr/item/DANMA_2021_500_a10/

[1] Cabrelli C.A., Heil C., Molter U.M., “Self-similarity and multiwavelets in higher dimensions”, Memoirs Amer. Math. Soc., 170, no. 807, 2004 | DOI | MR

[2] Gröchenig K., Madych W.R., “Multiresolution analysis, Haar bases, and self-similar tilings of ${{\mathbb{R}}^{n}}$”, IEEE Trans. Inform. Theory, 38:2 (1992), 556–568 | DOI | MR | Zbl

[3] Gröchenig K., Haas A., “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170 | DOI | MR | Zbl

[4] Krivoshein A., Protasov V.Yu., Skopina M.A., Multivariate wavelets frames, Springer, 2016 | MR

[5] Long C.T., “Addition theorems for sets of integers”, Pacific J. Math., 23:1 (1967), 107–112 | DOI | MR | Zbl

[6] Lagarias J., Wang Y., “Haar bases for ${{L}_{2}}({{\mathbb{R}}^{n}})$ and algebraic number theory”, J. Number Theory, 57:1 (1996), 181–197 | DOI | MR | Zbl

[7] Lagarias J., Wang Y., “Integral self-affine tiles in ${{\mathbb{R}}^{n}}$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102 | DOI | MR | Zbl

[8] Nathanson M.B., “Complementing sets of n-tuples of integers”, Proceedings of the American Mathematical Society, 34:1 (1972), 71–72 | MR | Zbl

[9] Nishio K., Miyazaki T., “Describing polyhedral tilings and higher dimensional polytopes by sequence of their two-dimensional components”, Sci Rep., 7 (2017), 40269 | DOI | MR

[10] Novikov I., Protasov V.Yu., Skopina M.A., Wavelets theory, Translations Mathematical Monographs, AMS, 2011 | DOI | MR

[11] Wojtaszczyk P., A Mathematical Introduction to Wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge–New York–Melbourne–Madrid, 1997 | MR | Zbl

[12] Yang Y.-M., Zhang Y., “Tilings of convex polyhedral cones and topological properties of self-affine tiles”, Discrete Computational Geometry, 2020 | DOI | MR

[13] Zaitseva T., “Prostye taily i attraktory”, Matem. sb., 211:9 (2020), 24–59 | DOI | MR | Zbl