Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_499_a11, author = {A. G. Chechkina}, title = {Operator estimates for the {Steklov} problem in an unbounded domain with rapidly changing conditions on the boundary}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {54--57}, publisher = {mathdoc}, volume = {499}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_499_a11/} }
TY - JOUR AU - A. G. Chechkina TI - Operator estimates for the Steklov problem in an unbounded domain with rapidly changing conditions on the boundary JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 54 EP - 57 VL - 499 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_499_a11/ LA - ru ID - DANMA_2021_499_a11 ER -
%0 Journal Article %A A. G. Chechkina %T Operator estimates for the Steklov problem in an unbounded domain with rapidly changing conditions on the boundary %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 54-57 %V 499 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_499_a11/ %G ru %F DANMA_2021_499_a11
A. G. Chechkina. Operator estimates for the Steklov problem in an unbounded domain with rapidly changing conditions on the boundary. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 499 (2021), pp. 54-57. http://geodesic.mathdoc.fr/item/DANMA_2021_499_a11/
[1] Mel'nyk T.A., “Asymptotic behavior of eigenvalues and eigenfunctions of the Steklov problem in a thick periodic junction”, Nonlinear Oscillations, 4:1 (2001), 91–105 | MR | Zbl
[2] Pérez E., “On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem”, Discrete Contin. Dyn. Syst. Ser. B, 7:4 (2007), 859–883 | MR | Zbl
[3] Nazarov S.A., “Asimptotika resheniya spektralnoi zadachi Steklova v oblasti s zatuplennym pikom”, Mat. zametki, 86:4 (2009), 571–587 | DOI | Zbl
[4] Chechkina A.G., “Usrednenie spektralnykh zadach s singulyarnym vozmuscheniem usloviya Steklova”, Izvestiya RAN, 81:1 (2017), 203–240 | MR | Zbl
[5] Chechkina A.G., D'Apice C., De Maio U., “Rate of Convergence of Eigenvalues to Singularly Perturbed Steklov-Type Problem for Elasticity System”, Applicable Analysis, 98:1-2 (2019), 32–44 | DOI | MR | Zbl
[6] Gadylshin R.R., Chechkin G.A., “Kraevaya zadacha dlya Laplasiana s bystro menyayuschimsya tipom granichnykh uslovii v mnogomernoi oblasti”, Sib. mat. zhurnal, 40:2 (1999), 271–287 | MR | Zbl
[7] Peres M.E., Chechkin G.A., Yablokova (Doronina) E.I., “O sobstvennykh kolebaniyakh tela s “legkimi” kontsentrirovannymi massami na poverkhnosti”, Uspekhi mat. nauk, 57:6 (2002), 195–196 | DOI | MR
[8] Chechkin G.A., “On Vibration of Partially Fastened Membrane with Many “Light” Concentrated Masses on the Boundary”, C. R. Mécanique, 332:12 (2004), 949–954 | DOI | Zbl
[9] Amirat Y., Chechkin G.A., Gadyl'shin R.R., “Asymptotics of the Solution of a Dirichlet Spectral Problem in a Junction with Highly Oscillating Boundary”, C. R. Mécanique, 336:9 (2008), 693–698 | DOI | Zbl
[10] Chechkin G.A., Koroleva Yu.O., Persson L.-E., “On the Precise Asymptotics of the Constant in the Friedrich's Inequality for Functions, Vanishing on the Part of the Boundary with Microinhomogeneous Structure”, Journal of Inequalities and Applications, 2007 (2007), 34138, 13 pp. | DOI | MR | Zbl
[11] Chechkin G.A., Koroleva Yu.O., Meidell A., Persson L.-E., “On the Friedrichs inequality in a domain perforated aperiodically along the boundary. Homogenization procedure. Asymptotics for parabolic problems”, Russ. J. Math. Phys., 16 (2009), 1–16 | DOI | MR | Zbl
[12] Suslina T.A., “Usrednenie zadachi Dirikhle dlya ellipticheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Algebra i analiz, 29:2 (2017), 139–192 | MR
[13] Griso G., “Interior error estimate for periodic homogenization”, Anal. Appl., 4 (2006), 61–79 | DOI | MR | Zbl