Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_498_a8, author = {A. A. Makhnev and I. N. Belousov and M. P. Golubyatnikov and M. S. Nirova}, title = {Three infinite families of {Shilla} graphs do not exist}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {45--50}, publisher = {mathdoc}, volume = {498}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a8/} }
TY - JOUR AU - A. A. Makhnev AU - I. N. Belousov AU - M. P. Golubyatnikov AU - M. S. Nirova TI - Three infinite families of Shilla graphs do not exist JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 45 EP - 50 VL - 498 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a8/ LA - ru ID - DANMA_2021_498_a8 ER -
%0 Journal Article %A A. A. Makhnev %A I. N. Belousov %A M. P. Golubyatnikov %A M. S. Nirova %T Three infinite families of Shilla graphs do not exist %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 45-50 %V 498 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a8/ %G ru %F DANMA_2021_498_a8
A. A. Makhnev; I. N. Belousov; M. P. Golubyatnikov; M. S. Nirova. Three infinite families of Shilla graphs do not exist. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 45-50. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a8/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, B.–Heidelberg–N.Y., 1989, 489 pp. | MR | Zbl
[2] Koolen J.H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31 (2010), 2064–2073 | DOI | MR | Zbl
[3] Makhnev A.A., Nirova M.S., “Distantsionno-regulyarnye grafy Shilla”, Mat. zametki, 103:5 (2018), 730–744 | DOI | MR | Zbl
[4] Belousov I.N., Makhnev A.A., “To the theoty of Shilla graphs with ${{b}_{2}} = {{c}_{2}}$”, Sib. Electron. Math. Reports, 14 (2017), 1135–1146 | MR | Zbl
[5] Belousov I.N., “Distantsionno-regulyarnye grafy Shilla s ${{b}_{2}} = s{{c}_{2}}$”, Trudy IMM UrO RAN, 24, no. 3, 2018, 16–26
[6] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of sertain distance-regular graphs”, J. Comb. Theory, Series A, 115 (2008), 1086–1095 | DOI | MR | Zbl
[7] Gavrilyuk A., Koolen J., “A characterization of the graphs of bilinear $d \times d$-forms over ${{F}_{2}}$”, Combinatorica, 39:2 (2019), 289–321 | DOI | MR | Zbl