System of equations for the Marangoni boundary layer in media with Ladyzhenskaya rheological law
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 41-44

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of equations describing boundary layers of nonlinear generalized Newtonian viscous fluids with the Ladyzhenskaya rheological law is studied. The well-posedness of the stated problem is proved by applying the von Mises transformation method, which transforms the system of boundary layer equations into a quasilinear degenerate parabolic equation.
Keywords: von Mises transformation, Marangoni boundary layer, rheology, non-Newtonian media.
@article{DANMA_2021_498_a7,
     author = {M. A. Kisatov},
     title = {System of equations for the {Marangoni} boundary layer in media with {Ladyzhenskaya} rheological law},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {41--44},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a7/}
}
TY  - JOUR
AU  - M. A. Kisatov
TI  - System of equations for the Marangoni boundary layer in media with Ladyzhenskaya rheological law
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 41
EP  - 44
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a7/
LA  - ru
ID  - DANMA_2021_498_a7
ER  - 
%0 Journal Article
%A M. A. Kisatov
%T System of equations for the Marangoni boundary layer in media with Ladyzhenskaya rheological law
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 41-44
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a7/
%G ru
%F DANMA_2021_498_a7
M. A. Kisatov. System of equations for the Marangoni boundary layer in media with Ladyzhenskaya rheological law. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 41-44. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a7/