System of equations for the Marangoni boundary layer in media with Ladyzhenskaya rheological law
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 41-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of equations describing boundary layers of nonlinear generalized Newtonian viscous fluids with the Ladyzhenskaya rheological law is studied. The well-posedness of the stated problem is proved by applying the von Mises transformation method, which transforms the system of boundary layer equations into a quasilinear degenerate parabolic equation.
Keywords: von Mises transformation, Marangoni boundary layer, rheology, non-Newtonian media.
@article{DANMA_2021_498_a7,
     author = {M. A. Kisatov},
     title = {System of equations for the {Marangoni} boundary layer in media with {Ladyzhenskaya} rheological law},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {41--44},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a7/}
}
TY  - JOUR
AU  - M. A. Kisatov
TI  - System of equations for the Marangoni boundary layer in media with Ladyzhenskaya rheological law
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 41
EP  - 44
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a7/
LA  - ru
ID  - DANMA_2021_498_a7
ER  - 
%0 Journal Article
%A M. A. Kisatov
%T System of equations for the Marangoni boundary layer in media with Ladyzhenskaya rheological law
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 41-44
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a7/
%G ru
%F DANMA_2021_498_a7
M. A. Kisatov. System of equations for the Marangoni boundary layer in media with Ladyzhenskaya rheological law. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 41-44. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a7/

[1] Napolitano L.G., “Marangoni boundary layers”, Proc. 3rd Europ. symp. on material sci. in space (Grenoble, 1979), 349–358

[2] Batishchev V.A., Kuznetsov V.V., Pukhnachov V.V., “Marangoni boundary layers”, Prog. Aerospace Sci., 26 (1989), 353–370 | DOI | Zbl

[3] Kuznetsov V.V., Pogranichnye sloi Marangoni, dis. ... kand. fiz.-mat. nauk: 01.02.05, Novosibirsk, 1984, 29–42

[4] Aristov S.N., Prosviryakov E.Yu., “O sloistykh techeniyakh ploskoi svobodnoi konvektsii”, Nelineinaya dinamika, 9:4 (2013), 651

[5] Pukhnachev V.V., “Nestatsionarnye analogi resheniya Birikha”, Izvestiya Altaiskogo gos. un-ta, 2011, no. 1-2, 62

[6] Ortiz-Pèrez A.S., Dàvalos-Orozco L.A., “Convection in a horizontal fluid layer under an inclined temperature gradient”, Phys. Fluids, 28:3 (2011), 084107–084111 | DOI

[7] Samokhin V.N., Fadeeva G.M., Chechkin G.A., “Uravneniya pogranichnogo sloya dlya modifitsirovannoi sistemy Nave-Stoksa”, Tr. seminara im. I.G. Petrovskogo, 28, 2011, 329–361 | Zbl

[8] Samokhin V.N., Chechkin G.A., “Uravneniya pogranichnogo sloya obobschenno nyutonovskoi sredy v okrestnosti kriticheskoi tochki”, Tr. seminara im. I.G. Petrovskogo, 31, 2016, 158–176

[9] Bulatova R.R., Samokhin V.N., Chechkin G.A., “Uravneniya magnitogidrodinamicheskogo pogranichnogo sloya dlya modifitsirovannoi neszhimaemoi vyazkoi sredy. Otryv pogranichnogo sloya”, Problemy matematicheskogo analiza, 92 (2018), 83–100 | Zbl

[10] Bulatova R.R., Chechkin G.A., Chechkina T.P., Samokhin V.N., “On the influence of a magnetic field on the separation of the boundary layer of a non-Newtonian MHD medium”, C R Mécanique, 346:9 (2018), 807–814 | DOI | MR

[11] Bulatova R.R., Samokhin V.N., Chechkin G.A., “Sistema uravnenii pogranichnogo sloya reologicheski slozhnoi sredy. Peremennye Krokko”, DAN, 487:2 (2019), 119–125 | MR | Zbl

[12] Bulatova R.R., Samokhin V.N., Chechkin G.A., “O nestatsionarnom pogranichnom sloe vyazkoi reologicheski slozhnoi zhidkosti”, Trudy MIAN im. V.A. Steklova, 310, 2020, 40–77 | DOI | MR | Zbl

[13] Oleinik O.A., Samokhin V.N., Matematicheskie metody v teorii pogranichnogo sloya, Nauka. Fizmatlit, M., 1997, 508 pp. | MR

[14] Kirsanov E.A., Matveenko V.N., Nenyutonovskoe techenie dispersnykh, polimernykh i zhidkokristallicheskikh sistem. Strukturnyi podkhod, Tekhnosfera, M., 2016, 384 pp.