Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_498_a12, author = {G. V. Fedorov}, title = {On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {65--70}, publisher = {mathdoc}, volume = {498}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a12/} }
TY - JOUR AU - G. V. Fedorov TI - On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 65 EP - 70 VL - 498 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a12/ LA - ru ID - DANMA_2021_498_a12 ER -
%0 Journal Article %A G. V. Fedorov %T On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 65-70 %V 498 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a12/ %G ru %F DANMA_2021_498_a12
G. V. Fedorov. On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 65-70. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a12/
[1] Platonov V.P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | MR | Zbl
[2] Mazur B., “Rational isogenies of prime degree”, Ivent. Math., 44:2 (1978), 129–162 | MR | Zbl
[3] Platonov V.P., Fedorov G.V., “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | MR | Zbl
[4] Platonov V.P., Fedorov G.V., “On the problem of classification of periodic continued fractions in hyperelliptic fields”, Russian Mathematical Surveys, 75:4 (2020), 785–787 | DOI | MR | Zbl
[5] Artin E., “Quadratische K'orper im Gebiete der h'oheren Kongruenzen. I”, Math. Z., 19:1 (1924), 153–246 | DOI | MR
[6] Adams W. W., Razar M. J., “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc., 41:3 (1980), 481–498 | DOI | MR | Zbl
[7] Platonov V.P., Petrunin M.M., “Groups of S-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | MR | Zbl
[8] Fedorov G.V., “On the period length of a functional continued fraction over a number field”, Dokl. Math., 102:3 (2020), 513–517 | DOI | MR | Zbl
[9] Berry T.G., “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math., 55 (1990), 259–266 | DOI | MR | Zbl
[10] Zhgoon V.S., “On generalized jacobians and rational continued fractions in the hyperelliptic fields”, Chebyshevskii Sbornik, 18:4 (2017), 208–220 (In Russ.) | DOI | MR
[11] Zannier U., “Hyperelliptic continued fractions and generalized Jacobians”, American Journal of Mathematics, 141:1 (2019), 1–40 | DOI | MR | Zbl
[12] Fedorov G.V., “On the S-units for the valuations of the second degree in hyperelliptic fields”, Izvestiya. Mathematics, 84:2 (2020), 392–435 | DOI | MR | Zbl
[13] Mumford D., Tata Lectures on Theta, v. I, Progress in Mathematics, 28, 1983 ; v. II, Progress in Mathematics, 43, 1984 | DOI | MR | Zbl | Zbl