On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 65-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, for elements of hyperelliptic fields, the theory of functional continued fractions of generalized type associated with two linear valuations has been formulated for the first time. For an arbitrary element of a hyperelliptic field, the continued fraction of generalized type converges to this element for each of the two selected linear valuations of the hyperelliptic field. Denote by $S$ the set consisting of these two linear valuations. We find equivalent conditions describing the relationship between the quasi-periodicity of a continued fraction of generalized type, the existence of a fundamental $S$-unit, and the existence of a class of divisors of finite order in the divisor class group of a hyperelliptic field. The last condition is equivalent to the existence of a torsion point in the Jacobian of a hyperelliptic curve. These results complete the algorithmic solution of the periodicity problem in the Jacobians of hyperelliptic curves of genus two.
Keywords: continued fraction, fundamental $S$-unit, hyperelliptic field, divisor class group.
@article{DANMA_2021_498_a12,
     author = {G. V. Fedorov},
     title = {On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {65--70},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a12/}
}
TY  - JOUR
AU  - G. V. Fedorov
TI  - On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 65
EP  - 70
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a12/
LA  - ru
ID  - DANMA_2021_498_a12
ER  - 
%0 Journal Article
%A G. V. Fedorov
%T On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 65-70
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a12/
%G ru
%F DANMA_2021_498_a12
G. V. Fedorov. On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 65-70. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a12/

[1] Platonov V.P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | MR | Zbl

[2] Mazur B., “Rational isogenies of prime degree”, Ivent. Math., 44:2 (1978), 129–162 | MR | Zbl

[3] Platonov V.P., Fedorov G.V., “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | MR | Zbl

[4] Platonov V.P., Fedorov G.V., “On the problem of classification of periodic continued fractions in hyperelliptic fields”, Russian Mathematical Surveys, 75:4 (2020), 785–787 | DOI | MR | Zbl

[5] Artin E., “Quadratische K'orper im Gebiete der h'oheren Kongruenzen. I”, Math. Z., 19:1 (1924), 153–246 | DOI | MR

[6] Adams W. W., Razar M. J., “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc., 41:3 (1980), 481–498 | DOI | MR | Zbl

[7] Platonov V.P., Petrunin M.M., “Groups of S-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | MR | Zbl

[8] Fedorov G.V., “On the period length of a functional continued fraction over a number field”, Dokl. Math., 102:3 (2020), 513–517 | DOI | MR | Zbl

[9] Berry T.G., “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math., 55 (1990), 259–266 | DOI | MR | Zbl

[10] Zhgoon V.S., “On generalized jacobians and rational continued fractions in the hyperelliptic fields”, Chebyshevskii Sbornik, 18:4 (2017), 208–220 (In Russ.) | DOI | MR

[11] Zannier U., “Hyperelliptic continued fractions and generalized Jacobians”, American Journal of Mathematics, 141:1 (2019), 1–40 | DOI | MR | Zbl

[12] Fedorov G.V., “On the S-units for the valuations of the second degree in hyperelliptic fields”, Izvestiya. Mathematics, 84:2 (2020), 392–435 | DOI | MR | Zbl

[13] Mumford D., Tata Lectures on Theta, v. I, Progress in Mathematics, 28, 1983 ; v. II, Progress in Mathematics, 43, 1984 | DOI | MR | Zbl | Zbl