New correlative randomized algorithm for estimating the influence of the medium stochasticity on particle transport
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 55-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new correlative randomized algorithm is constructed by applying simple randomization of the majorant cross section (alignment, delta tracking) algorithm and using a one-dimensional distribution and the correlation length of the stochastic medium. The value of this parameter can be adjusted using simple test analysis. The performed computations have confirmed the practical efficiency of the new algorithm.
Keywords: correlative randomized algorithm, correlation length, stochastic medium, majorant cross section method (delta tracking), gamma radiation transport, computation cost.
@article{DANMA_2021_498_a10,
     author = {G. A. Mikhailov and I. N. Medvedev},
     title = {New correlative randomized algorithm for estimating the influence of the medium stochasticity on particle transport},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {55--58},
     publisher = {mathdoc},
     volume = {498},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_498_a10/}
}
TY  - JOUR
AU  - G. A. Mikhailov
AU  - I. N. Medvedev
TI  - New correlative randomized algorithm for estimating the influence of the medium stochasticity on particle transport
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 55
EP  - 58
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_498_a10/
LA  - ru
ID  - DANMA_2021_498_a10
ER  - 
%0 Journal Article
%A G. A. Mikhailov
%A I. N. Medvedev
%T New correlative randomized algorithm for estimating the influence of the medium stochasticity on particle transport
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 55-58
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_498_a10/
%G ru
%F DANMA_2021_498_a10
G. A. Mikhailov; I. N. Medvedev. New correlative randomized algorithm for estimating the influence of the medium stochasticity on particle transport. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 498 (2021), pp. 55-58. http://geodesic.mathdoc.fr/item/DANMA_2021_498_a10/

[1] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960

[2] Marchuk G.I., Mikhailov G.A., Nazaraliev M.A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | MR

[3] Spane Dzh., Gelbard Z., Metod Monte-Karlo i zadachi teorii perenosa neitronov, Atomizdat, M., 1972

[4] Coleman W.A., “Mathematical verification of a certain Monte Carlo sampling technique and applications of the techniques to radiation transport problems”, J. Nucl. Sci. and Engng, 32:1 (1968), 76–81 | DOI

[5] Woodcock E., Murphy T., Hemmings P., Longworth S., “Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry”, Proc. Conf. Applications of Computing Methods to Reactor Problems, 1965, 557

[6] Mikhailov G.A., Averina T.A., “Algoritm “maksimalnogo secheniya” v metode Monte-Karlo”, DAN, 428:2 (2009), 163–165 | DOI | Zbl

[7] Mikhailov G.A., “Randomizirovannye algoritmy metoda Monte-Karlo dlya zadach so sluchainymi parametrami (metod “dvoinoi randomizatsii”)”, Sib. zhurn. vychisl. matem., 22:2 (2019), 187–200 | DOI | MR

[8] Ambos A.Y., Mikhailov G.A., “Numerically statistical simulation of the intensity field of the radiation transmitted through a random medium”, Rus. J. Numer. Anal. Math. Modelling, 33:3 (2018), 161–171 | DOI | MR

[9] Coline Larmier, Andrea Zoia, Fausto Malvagi, Eric Dumonteil, Alain Mazzolo, “Monte Carlo particle transport in random media: The effects of mixing statistics”, J. Quant. Spectr. Radiat. Transfer, 196 (2017), 270–286 | DOI

[10] Glazov G.N., Titov G.A., “Statisticheskie kharakteristiki koeffitsienta oslableniya v razorvannoi oblachnosti. I. Model s sharami odinakovogo radiusa”, Voprosy lazernogo zondirovaniya atmosfery, Novosibirsk, 1976, 126–139

[11] Ibragimov I.A., Linnik Yu.V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[12] Medvedev I.N., Mikhailov G.A., “Randomized exponential transformation algorithm for solving the stochastic problems of gamma-ray transport theory”, Rus. J. Numer. Anal. Math. Modelling, 35:3 (2020), 153–162 | DOI | MR