Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_497_a5, author = {I. V. Timokhin and S. A. Matveev and E. E. Tyrtyshnikov and A. P. Smirnov}, title = {Method for reduced basis discovery in nonstationary problems}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {31--34}, publisher = {mathdoc}, volume = {497}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_497_a5/} }
TY - JOUR AU - I. V. Timokhin AU - S. A. Matveev AU - E. E. Tyrtyshnikov AU - A. P. Smirnov TI - Method for reduced basis discovery in nonstationary problems JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 31 EP - 34 VL - 497 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_497_a5/ LA - ru ID - DANMA_2021_497_a5 ER -
%0 Journal Article %A I. V. Timokhin %A S. A. Matveev %A E. E. Tyrtyshnikov %A A. P. Smirnov %T Method for reduced basis discovery in nonstationary problems %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 31-34 %V 497 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_497_a5/ %G ru %F DANMA_2021_497_a5
I. V. Timokhin; S. A. Matveev; E. E. Tyrtyshnikov; A. P. Smirnov. Method for reduced basis discovery in nonstationary problems. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 31-34. http://geodesic.mathdoc.fr/item/DANMA_2021_497_a5/
[1] Zagaynov V.A., Denisenko K., Moskaev A., Lushnikov A.A., “Periodical regimes in source-enhanced coagulating systems with sinks”, J. Aerosol Sci., 32 (2001), S983-S984 | DOI
[2] Brilliantov N.V. , Otienom W., Matveev S.A., Smirnov A.P., Tyrtyshnikov E.E., Krapivsky P.L., “Steady oscillations in aggregation-fragmentation processes”, Phys. Rev. E, 98:1 (2018) | DOI | MR
[3] Matveev S.A., Smirnov A.P., Tyrtyshnikov E.E., “A fast numerical method for the Cauchy problem for the Smoluchowski equation”, J. Comput. Phys., 282 (2015), 23–32 | DOI | MR | Zbl
[4] Pinnau R., “Model Reduction via Proper Orthogonal Decomposition”, Model Order Reduction: Theory, Research Aspects and Applications, Mathematics in Industry, 13, eds. W.H.A. Schilders, H.A. van der Vorst, J. Rommes, Springer, B.–Heidelberg, 2008 | MR | Zbl
[5] Smoluchowski M.V., “Drei vortrage uber diffusion, Brownsche bewegung und koagulation von kolloidteilchen”, Zeitschrift fur Physik, 17 (1916), 557–585
[6] Timokhin I.V., Matveev S.A., Siddharth N., Tyrtyshnikov E.E., Smirnov A.P., Brilliantov N.V., “Newton method for stationary and quasi-stationary problems for Smoluchowski-type equations”, J. Comput. Phys., 382 (2019), 124–137 | DOI | MR | Zbl
[7] Ball R.C., Connaughton C., Jones P.P., Rajesh R., Zaboronski O., “Collective oscillations in irreversible coagulation driven by monomer inputs and large-cluster outputs”, Phys. Rev. Lett., 109:16 (2012), 168304 | DOI