Rigidity theorem for self-affine arcs
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 18-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

It has been known for more than a decade that, if a self-similar arc $\gamma$ can be shifted along itself by similarity maps that are arbitrarily close to identity, then $\gamma$ is a straight line segment. We extend this statement to the class of self-affine arcs and prove that each self-affine arc admitting affine shifts that may be arbitrarily close to identity is a segment of a parabola or a straight line.
Keywords: self-affine arc, attractor, weak separation property, rigidity theorem.
@article{DANMA_2021_497_a3,
     author = {A. V. Tetenov and O. A. Chelkanova},
     title = {Rigidity theorem for self-affine arcs},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {18--22},
     publisher = {mathdoc},
     volume = {497},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_497_a3/}
}
TY  - JOUR
AU  - A. V. Tetenov
AU  - O. A. Chelkanova
TI  - Rigidity theorem for self-affine arcs
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 18
EP  - 22
VL  - 497
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_497_a3/
LA  - ru
ID  - DANMA_2021_497_a3
ER  - 
%0 Journal Article
%A A. V. Tetenov
%A O. A. Chelkanova
%T Rigidity theorem for self-affine arcs
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 18-22
%V 497
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_497_a3/
%G ru
%F DANMA_2021_497_a3
A. V. Tetenov; O. A. Chelkanova. Rigidity theorem for self-affine arcs. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 18-22. http://geodesic.mathdoc.fr/item/DANMA_2021_497_a3/

[1] Bandt Ch., Graf S., “Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff measure”, Proc. Amer. Math. Soc., 114:4 (1992), 995–1001 | MR | Zbl

[2] Bandt C., Kravchenko A.S., “Differentiability of fractal curves”, Nonlinearity, 24 (2011), 2717 | DOI | MR | Zbl

[3] Gantmakher F.R., Teoriya matrits, 5-e izd., Fizmatlit, M., 2004, 560 pp. | MR

[4] Hutchinson J., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[5] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[6] Zerner M.P.W., “Weak separation properties for self-similar sets”, Proc. Amer. Math. Soc., 124:11 (1996), 3529–3539 | DOI | MR | Zbl

[7] Aseev V.V., Tetenov A.V., Kravchenko A.S., “O samopodobnykh zhordanovykh krivykh na ploskosti”, Sib. matem. zhurn., 44:3 (2003), 481–492 | MR | Zbl

[8] Aseev V.V., Tetenov A.V., “O zhordanovykh samopodobnykh dugakh, dopuskayuschikh strukturnuyu parametrizatsiyu”, Sib. matem. zhurn., 46:4 (2005), 733–748 | MR | Zbl

[9] Tetenov A.V., “Samopodobnye zhordanovy dugi i graf-orientirovannye sistemy podobii”, Sib. matem. zhurn., 47:5 (2006), 1147–1153 | MR

[10] Tetenov A.V., “On the rigidity of one-dimensional systems of contraction similitudes”, Siberian Electr. Math. Rep., 3 (2006), 342–345 | MR | Zbl