Keywords: cocycle, invariant measures
@article{DANMA_2021_497_a1,
author = {A. M. Vershik},
title = {A method of defining central and {Gibbs} measures and the ergodic method},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {7--11},
year = {2021},
volume = {497},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2021_497_a1/}
}
TY - JOUR AU - A. M. Vershik TI - A method of defining central and Gibbs measures and the ergodic method JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 7 EP - 11 VL - 497 UR - http://geodesic.mathdoc.fr/item/DANMA_2021_497_a1/ LA - ru ID - DANMA_2021_497_a1 ER -
A. M. Vershik. A method of defining central and Gibbs measures and the ergodic method. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 7-11. http://geodesic.mathdoc.fr/item/DANMA_2021_497_a1/
[1] Vershik A.M., “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, DAN SSSR, 218:4 (1974), 749–752 | Zbl
[2] Vershik A.M., “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, Uspekhi mat. nauk, 72:2 (434) (2017), 67–146 | DOI | MR | Zbl
[3] Vershik A.M., “Tri teoremy o edinstvennosti mery Plansherelya c raznykh pozitsii”, Tr. MIAN, 305, 2019, 71–85 | DOI | Zbl
[4] Vershik A.M., “Asimptotika razbieniya kuba na simpleksy Veilya”, Funkts. anal. i pril., 53:2 (2019), 11–31 | DOI | MR | Zbl
[5] Vershik A.M, Tsilevich N.V., “Ergodichnost i totalnost razbienii, svyazannykh s algoritmom RSK”, Funkts. anal. i pril., 55:1 (2021), 33–42 | DOI | MR | Zbl
[6] Linnik Yu.V., Ergodicheskie svoistva algebraicheskikh polei, Izd-vo LGU, L., 1967
[7] Diaconis P., Freedman D., “Partial exchangeability and sufficiency”, Statistics: Applications and New Directions, Indian Statistical Institute, Calcutta, 1981, 205–236 | MR
[8] Dougherty R., Jackson S., Kechris A., “The structure of hyperfinite Borel equivalence relations”, Trans. Amer. Math. Soc., 341:1 (1994), 193–225 | DOI | MR | Zbl
[9] Kerov S.V., Vershik A.M., “The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl
[10] Romik D., Sniady P., “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl
[11] Schmidt K., “Invariant measures for certain expansive $\mathbb{Z}^2$-actions”, Israel J. Math., 90 (1995), 295–300 | DOI | MR | Zbl