A method of defining central and Gibbs measures and the ergodic method
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 7-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate a general statement of the problem of defining invariant measures with certain properties and suggest an ergodic method of perturbations for describing such measures.
Keywords: equivalence relation, cocycle, invariant measures, Markov chains, cotransitions.
@article{DANMA_2021_497_a1,
     author = {A. M. Vershik},
     title = {A method of defining central and {Gibbs} measures and the ergodic method},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {7--11},
     publisher = {mathdoc},
     volume = {497},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_497_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - A method of defining central and Gibbs measures and the ergodic method
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 7
EP  - 11
VL  - 497
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_497_a1/
LA  - ru
ID  - DANMA_2021_497_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%T A method of defining central and Gibbs measures and the ergodic method
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 7-11
%V 497
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_497_a1/
%G ru
%F DANMA_2021_497_a1
A. M. Vershik. A method of defining central and Gibbs measures and the ergodic method. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 497 (2021), pp. 7-11. http://geodesic.mathdoc.fr/item/DANMA_2021_497_a1/

[1] Vershik A.M., “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, DAN SSSR, 218:4 (1974), 749–752 | Zbl

[2] Vershik A.M., “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, Uspekhi mat. nauk, 72:2 (434) (2017), 67–146 | DOI | MR | Zbl

[3] Vershik A.M., “Tri teoremy o edinstvennosti mery Plansherelya c raznykh pozitsii”, Tr. MIAN, 305, 2019, 71–85 | DOI | Zbl

[4] Vershik A.M., “Asimptotika razbieniya kuba na simpleksy Veilya”, Funkts. anal. i pril., 53:2 (2019), 11–31 | DOI | MR | Zbl

[5] Vershik A.M, Tsilevich N.V., “Ergodichnost i totalnost razbienii, svyazannykh s algoritmom RSK”, Funkts. anal. i pril., 55:1 (2021), 33–42 | DOI | MR | Zbl

[6] Linnik Yu.V., Ergodicheskie svoistva algebraicheskikh polei, Izd-vo LGU, L., 1967

[7] Diaconis P., Freedman D., “Partial exchangeability and sufficiency”, Statistics: Applications and New Directions, Indian Statistical Institute, Calcutta, 1981, 205–236 | MR

[8] Dougherty R., Jackson S., Kechris A., “The structure of hyperfinite Borel equivalence relations”, Trans. Amer. Math. Soc., 341:1 (1994), 193–225 | DOI | MR | Zbl

[9] Kerov S.V., Vershik A.M., “The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl

[10] Romik D., Sniady P., “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl

[11] Schmidt K., “Invariant measures for certain expansive $\mathbb{Z}^2$-actions”, Israel J. Math., 90 (1995), 295–300 | DOI | MR | Zbl