Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_496_a2, author = {V. V. Vlasov and N. A. Rautian}, title = {Spectral analysis and solvability of {Volterra} integro-differential equations}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {16--20}, publisher = {mathdoc}, volume = {496}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a2/} }
TY - JOUR AU - V. V. Vlasov AU - N. A. Rautian TI - Spectral analysis and solvability of Volterra integro-differential equations JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 16 EP - 20 VL - 496 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a2/ LA - ru ID - DANMA_2021_496_a2 ER -
%0 Journal Article %A V. V. Vlasov %A N. A. Rautian %T Spectral analysis and solvability of Volterra integro-differential equations %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 16-20 %V 496 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a2/ %G ru %F DANMA_2021_496_a2
V. V. Vlasov; N. A. Rautian. Spectral analysis and solvability of Volterra integro-differential equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 16-20. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a2/
[1] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, “Nauka”, M., 1970, 280 pp. | MR
[2] Christensen R.M., Theory of viscoelasticity. An introduction, Academic Press, N.Y.–L., 1971, 364 pp.
[3] Amendola G., Fabrizio M., Golden J.M., Thermodynamics of Materials with memory. Theory and applications, Springer, N.Y.–Dordrecht–Heidelberg–London, 2012, 576 pp. | MR | Zbl
[4] Gurtin M.E., Pipkin A.C., “General theory of heat conduction with finite wave speed”, Arch. Rat. Mech. Analyu, 31 (1968), 113–126 | DOI | MR | Zbl
[5] Lykov A.V., Teplomassoobmen, Spravochnik, 2-e izd., pererab. i dop., Energiya, M., 1978, 480 pp.
[6] Eremenko A., Ivanov S., “Spectra of the Gurtin-Pipkin type equations”, SIAM J. Math. Anal., 43:5 (2011), 2296–2306 | DOI | MR | Zbl
[7] Vlasov V.V., Rautian N.A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016
[8] Sanche-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984, 472 pp. | MR
[9] Vlasov V.V., Rautian N.A., “Spektralnyi analiz giperbolicheskikh volterrovykh integrodifferentsialnykh uravnenii”, DAN, 464:6 (2015), 656–660
[10] Vlasov V.V., Rautian N.A., “Korrektnaya razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Sovremennaya matematika. Fundamentalnye napravleniya, 58, 2015, 22–42
[11] Vlasov V.V., Rautian N.A., “Issledovanie volterrovykh integro-differentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, DAN, 471:3 (2016), 259–262 | MR | Zbl
[12] Lions Zh.P., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp.
[13] Miloslavskii A.I., Spektralnye svoistva operatornogo puchka, voznikayuschego v vyazkouprugosti, Kharkov, 1987, 53 pp.
[14] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR
[15] Radzievskii G.V., “Asimptotika raspredeleniya kharakteristicheskikh chisel operator-funktsii, analiticheskikh v ugle”, Matem. sb., 112:3 (1980), 396–420 | MR | Zbl