Spectral analysis and solvability of Volterra integro-differential equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 16-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integro-differential equations with unbounded operator coefficients in a Hilbert space are studied. The equations under consideration are abstract hyperbolic equations perturbed by terms containing Volterra integral operators. These equations are operator models of integro-differential equations with partial derivatives arising in the theory of viscoelasticity, thermal physics, and homogenization problems in multiphase media. The correct solvability of these equations in weighted Sobolev spaces of vector functions is established, and a spectral analysis of the operator functions that are the symbols of these equations is carried out.
Keywords: integro-differential equations, operator function, spectra, Volterra operator.
@article{DANMA_2021_496_a2,
     author = {V. V. Vlasov and N. A. Rautian},
     title = {Spectral analysis and solvability of {Volterra} integro-differential equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {16--20},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a2/}
}
TY  - JOUR
AU  - V. V. Vlasov
AU  - N. A. Rautian
TI  - Spectral analysis and solvability of Volterra integro-differential equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 16
EP  - 20
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a2/
LA  - ru
ID  - DANMA_2021_496_a2
ER  - 
%0 Journal Article
%A V. V. Vlasov
%A N. A. Rautian
%T Spectral analysis and solvability of Volterra integro-differential equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 16-20
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a2/
%G ru
%F DANMA_2021_496_a2
V. V. Vlasov; N. A. Rautian. Spectral analysis and solvability of Volterra integro-differential equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 16-20. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a2/

[1] Ilyushin A.A., Pobedrya B.E., Osnovy matematicheskoi teorii termovyazkouprugosti, “Nauka”, M., 1970, 280 pp. | MR

[2] Christensen R.M., Theory of viscoelasticity. An introduction, Academic Press, N.Y.–L., 1971, 364 pp.

[3] Amendola G., Fabrizio M., Golden J.M., Thermodynamics of Materials with memory. Theory and applications, Springer, N.Y.–Dordrecht–Heidelberg–London, 2012, 576 pp. | MR | Zbl

[4] Gurtin M.E., Pipkin A.C., “General theory of heat conduction with finite wave speed”, Arch. Rat. Mech. Analyu, 31 (1968), 113–126 | DOI | MR | Zbl

[5] Lykov A.V., Teplomassoobmen, Spravochnik, 2-e izd., pererab. i dop., Energiya, M., 1978, 480 pp.

[6] Eremenko A., Ivanov S., “Spectra of the Gurtin-Pipkin type equations”, SIAM J. Math. Anal., 43:5 (2011), 2296–2306 | DOI | MR | Zbl

[7] Vlasov V.V., Rautian N.A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016

[8] Sanche-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984, 472 pp. | MR

[9] Vlasov V.V., Rautian N.A., “Spektralnyi analiz giperbolicheskikh volterrovykh integrodifferentsialnykh uravnenii”, DAN, 464:6 (2015), 656–660

[10] Vlasov V.V., Rautian N.A., “Korrektnaya razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, Sovremennaya matematika. Fundamentalnye napravleniya, 58, 2015, 22–42

[11] Vlasov V.V., Rautian N.A., “Issledovanie volterrovykh integro-differentsialnykh uravnenii, voznikayuschikh v teorii vyazkouprugosti”, DAN, 471:3 (2016), 259–262 | MR | Zbl

[12] Lions Zh.P., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp.

[13] Miloslavskii A.I., Spektralnye svoistva operatornogo puchka, voznikayuschego v vyazkouprugosti, Kharkov, 1987, 53 pp.

[14] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR

[15] Radzievskii G.V., “Asimptotika raspredeleniya kharakteristicheskikh chisel operator-funktsii, analiticheskikh v ugle”, Matem. sb., 112:3 (1980), 396–420 | MR | Zbl