On global solvability of nonlinear equations with parameters
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 68-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider smooth mappings acting from one Banach space to another and depending on a parameter belonging to a topological space. Under various regularity assumptions, sufficient conditions for the existence of global and semilocal continuous inverse and implicit functions are obtained. We consider applications of these results to the problem of continuous extension of implicit functions and to the problem of coincidence points of smooth and continuous compact mappings.
Keywords: global implicit function, implicit function extension, coincidence point.
@article{DANMA_2021_496_a14,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {On global solvability of nonlinear equations with parameters},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {68--72},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a14/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - On global solvability of nonlinear equations with parameters
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 68
EP  - 72
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a14/
LA  - ru
ID  - DANMA_2021_496_a14
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T On global solvability of nonlinear equations with parameters
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 68-72
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a14/
%G ru
%F DANMA_2021_496_a14
A. V. Arutyunov; S. E. Zhukovskiy. On global solvability of nonlinear equations with parameters. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 68-72. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a14/

[1] Hadamard J., “Sur les transformations ponctuelles”, Bull. Soc. Math. France, 34 (1906), 71–84 | DOI | MR

[2] Ortega Dzh., Reinbolt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[3] Arutyunov A.V., Zhukovskii S.E., “Primenenie metodov obyknovennykh differentsialnykh uravnenii dlya globalnykh teorem o neyavnoi funktsii”, Diff. uravneniya, 55:4 (2019), 452–463 | DOI

[4] Arutyunov A.V., Izmailov A.F., Zhukovskiy S.E., “Continuous selections of solutions for locally lipschitzian equations”, J. Optim. Theory Appl., 185 (2020), 679–699 | DOI | MR | Zbl

[5] Michael E., “Continuous selections. I”, Annals of Mathematics, 63:2 (1956), 361–382 | DOI | MR | Zbl

[6] Tsarkov I.G., “O pravom obratnom operatore i $\varepsilon $-vyborkakh”, UMN, 50:2 (1995), 207–208 | MR | Zbl

[7] Fabian M., Preiss D., “A generalization of the interior mapping theorem of Clarke and Pourciau”, Comment. Math. Univ. Carol., 28 (1987), 311–324 | MR | Zbl

[8] Arutyunov A.V., “Uslovie Karisti i suschestvovanie minimuma ogranichennoi snizu funktsii v metricheskom prostranstve. Prilozheniya k teorii tochek sovpadeniya”, Tr. MIAN, 291, 2015, 30–44 | DOI | Zbl

[9] Plastock R., “Homeomorphisms between Banach spaces”, Tr. AMS, 200 (1974), 169–183 | DOI | MR | Zbl

[10] Abramov A.A., Yukhno L.F., “Ob odnom chislennom metode resheniya sistem nelineinykh uravnenii”, ZhVMiMF, 55:11 (2015), 1827–1834 | Zbl

[11] Tsarkov I.G., “O globalnom suschestvovanii neyavnoi funktsii”, Matem. sb., 184:7 (1993), 79–116 | Zbl

[12] Ulam S., Nereshennye matematicheskie zadachi, Nauka, M., 1964