Uniqueness and existence theorems for solving problems of scattering electromagnetic waves by anisotropic bodies
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 59-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems on the uniqueness and existence of solutions to problems of scattering electromagnetic waves by bounded three-dimensional inhomogeneous anisotropic bodies, including lossless ones with discontinuities in the parameters of the medium, are proved.
Keywords: problems of scattering electromagnetic waves, Maxwell’s equations, media without losses, anisotropic media, volume singular integral equations.
@article{DANMA_2021_496_a12,
     author = {A. B. Samokhin and Yu. G. Smirnov},
     title = {Uniqueness and existence theorems for solving problems of scattering electromagnetic waves by anisotropic bodies},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {59--63},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a12/}
}
TY  - JOUR
AU  - A. B. Samokhin
AU  - Yu. G. Smirnov
TI  - Uniqueness and existence theorems for solving problems of scattering electromagnetic waves by anisotropic bodies
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 59
EP  - 63
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a12/
LA  - ru
ID  - DANMA_2021_496_a12
ER  - 
%0 Journal Article
%A A. B. Samokhin
%A Yu. G. Smirnov
%T Uniqueness and existence theorems for solving problems of scattering electromagnetic waves by anisotropic bodies
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 59-63
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a12/
%G ru
%F DANMA_2021_496_a12
A. B. Samokhin; Yu. G. Smirnov. Uniqueness and existence theorems for solving problems of scattering electromagnetic waves by anisotropic bodies. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 59-63. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a12/

[1] Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, 93, Springer-Verlag, B., 1992 | DOI | MR | Zbl

[2] Potthast R., “Integral equation methods in electromagnetic scattering from anisotropic media”, J. of Integral Equations and Applications, 11:2 (1999), 197–215 | DOI | MR | Zbl

[3] Samokhin A.B., “Ob'emnye singulyarnye integralnye uravneniya dlya zadach rasseyaniya na trekhmernykh dielektricheskikh strukturakh”, Differents. uravneniya, 50:9 (2014), 1215–1230 | DOI | Zbl

[4] Samokhin A.B., Integralnye uravneniya i iteratsionnye metody v elektromagnitnom rasseyanii, Radio i svyaz, M., 1998

[5] Ball J.M., Capdeboscq Y., Tsering Xiao B., “On uniqueness for time harmonic anisotropic Maxwell's equations with piecewise regular coefficients”, Mathematical Models and Methods in Applied Science, 22:11 (2012), 1–34 | DOI | MR

[6] Smirnov Yu.G., Tsupak A.A., “O suschestvovanii i edinstvennosti klassicheskogo resheniya zadachi difraktsii elektromagnitnoi volny na neodnorodnom dielektricheskom tele bez poter”, ZhVMiMF, 57:4 (2017), 702–709 | Zbl

[7] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Psevdodifferentsialnye operatory, Mir, M., 1987