Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DANMA_2021_496_a11, author = {A. M. Savchuk and I. V. Sadovnichaya}, title = {Equiconvergence of spectral decompositions for {Sturm--Liouville} operators with a distributional potential in scales of spaces}, journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a}, pages = {56--58}, publisher = {mathdoc}, volume = {496}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a11/} }
TY - JOUR AU - A. M. Savchuk AU - I. V. Sadovnichaya TI - Equiconvergence of spectral decompositions for Sturm--Liouville operators with a distributional potential in scales of spaces JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 56 EP - 58 VL - 496 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a11/ LA - ru ID - DANMA_2021_496_a11 ER -
%0 Journal Article %A A. M. Savchuk %A I. V. Sadovnichaya %T Equiconvergence of spectral decompositions for Sturm--Liouville operators with a distributional potential in scales of spaces %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 56-58 %V 496 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a11/ %G ru %F DANMA_2021_496_a11
A. M. Savchuk; I. V. Sadovnichaya. Equiconvergence of spectral decompositions for Sturm--Liouville operators with a distributional potential in scales of spaces. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 56-58. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a11/