Problem of determining the anisotropic conductivity in electrodynamic equations
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 53-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a system of electrodynamic equations, the inverse problem of determining an anisotropic conductivity is considered. It is supposed that the conductivity is described by a diagonal matrix $\sigma(x)=\operatorname{diag}(\sigma_1(x),\sigma_2(x),\sigma_3(x))$ with $\sigma(x)$ outside of the domain $\Omega=\{x\in\mathbb R^3\mid |x|$, $R>0$, and the permittivity $\varepsilon$ and the permeability $\mu$ of the medium are positive constants everywhere in $\mathbb R^3$. Plane waves coming from infinity and impinging on an inhomogeneity localized in $\Omega$ are considered. For the determination of the unknown functions $\sigma_1(x),\sigma_2(x),\sigma_3(x)$, information related to the vector of electric intensity is given on the boundary $S$ of the domain $\Omega$. It is shown that this information reduces the inverse problem to three identical problems of X-ray tomography.
Keywords: Maxwell equations, anisotropy, conductivity, plane waves, inverse problem, tomography.
@article{DANMA_2021_496_a10,
     author = {V. G. Romanov},
     title = {Problem of determining the anisotropic conductivity in electrodynamic equations},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {53--55},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a10/}
}
TY  - JOUR
AU  - V. G. Romanov
TI  - Problem of determining the anisotropic conductivity in electrodynamic equations
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 53
EP  - 55
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a10/
LA  - ru
ID  - DANMA_2021_496_a10
ER  - 
%0 Journal Article
%A V. G. Romanov
%T Problem of determining the anisotropic conductivity in electrodynamic equations
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 53-55
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a10/
%G ru
%F DANMA_2021_496_a10
V. G. Romanov. Problem of determining the anisotropic conductivity in electrodynamic equations. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 53-55. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a10/

[1] Tikhonov A.N., Izv. AN SSSR. Ser. geogr. i geofiz., 10:3 (1946), 213–231

[2] Tikhonov A.N., DAN SSSR, 60:5 (1949), 797–800

[3] Tikhonov A.N., DAN SSSR, 73:2 (1950), 295–297

[4] Tikhonov A.N., ZhVMiMF, 5:3 (1965), 545–548

[5] Cagniard L., Geophysics, 187:3 (1953), 605–635 | DOI

[6] Romanov V.G., Kabanikhin S.I., Obratnye zadachi geoelektriki, Nauka, M., 1991 | MR

[7] Karchevsky A.L., J. Inv. and Ill-Posed Problems, 17:4 (2009), 385–402 | DOI | MR

[8] Romanov V.G., Sib. matem. zhurn., 52:4 (2011), 861–875 | MR | Zbl

[9] Romanov V.G., ZhVMiMF, 60:6 (2020), 134–141

[10] Karchevskii A.L., Dedok V.A., Sib. zhurn. industr. matem., 12:3 (2018), 50–59 | MR | Zbl

[11] Romanov V.G., ZhVMiMF, 60:6 (2020), 142–160

[12] Khelgason S., Preobrazovanie Radona, Mir, M., 1983

[13] Natterer F., The mathematics of computerized tomography, Classics in Applied Mathematics, 32, SIAM, PA Philadelphia, 2001 | MR | Zbl

[14] Finch D., Inverse Problems, 2:2 (1986), 197–203 | DOI | MR