On oscillation properties of self-adjoint boundary value problems of fourth order
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 10-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The connection between the number of internal zeros of nontrivial solutions to fourth-order self-adjoint boundary value problems and the inertia index of these problems is studied. We specify the types of problems for which such a connection can be established. In addition, we specify the types of problems for which a connection between the inertia index and the number of internal zeros of the derivatives of nontrivial solutions can be established. Examples demonstrating the effectiveness of the proposed new approach to an oscillatory problem are considered.
Keywords: boundary value problems for ordinary differential equations, spectral and oscillatory problems, inertia index, Kellogg kernels.
@article{DANMA_2021_496_a1,
     author = {A. A. Vladimirov and A. A. Shkalikov},
     title = {On oscillation properties of self-adjoint boundary value problems of fourth order},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {10--15},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a1/}
}
TY  - JOUR
AU  - A. A. Vladimirov
AU  - A. A. Shkalikov
TI  - On oscillation properties of self-adjoint boundary value problems of fourth order
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 10
EP  - 15
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a1/
LA  - ru
ID  - DANMA_2021_496_a1
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%A A. A. Shkalikov
%T On oscillation properties of self-adjoint boundary value problems of fourth order
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 10-15
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a1/
%G ru
%F DANMA_2021_496_a1
A. A. Vladimirov; A. A. Shkalikov. On oscillation properties of self-adjoint boundary value problems of fourth order. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 10-15. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a1/

[1] Rofe-Beketov F.S., Kholkin A.M., Spektralnyi analiz differentsialnykh operatorov. Svyaz spektralnykh i ostsillyatsionnykh svoistv, Mariupol, 2001, 331 pp.

[2] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp.

[3] Vladimirov A.A., Matem. zametki, 75:6 (2004), 941–943 | DOI | Zbl

[4] Neiman-zade M.I., Shkalikov A.A., Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl

[5] Savchuk A.M., Shkalikov A.A., Trudy MMO, 64, 2003, 159–212 | Zbl

[6] Ben Amara Zh., Vladimirov A.A., Shkalikov A.A., Matem. zametki, 94:1 (2013), 55–67 | DOI | Zbl

[7] Gantmakher F.R., Krein M.G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITTL, M.-L., 1950, 359 pp. | MR

[8] Borovskikh A.V., Pokornyi Yu.V., Uspekhi matem. nauk, 49:3 (1994), 3–42 | MR | Zbl

[9] Vladimirov A.A., Matem. zametki, 100:6 (2016), 800–806 | DOI

[10] Leighton W., Nehari Z., Trans. Amer. Math. Soc., 89 (1958), 325–377 | DOI | MR

[11] Ben Amara Zh., Vladimirov A.A., Fund. i prikl. matem., 12:4 (2006), 41–52

[12] Vladimirov A.A., Karulina E.S., Matem. zametki, 106:6 (2019), 854–859 | DOI | Zbl

[13] Kerimov N.B., Aliev Z.S., Agaev E.A., Dokl. Akad. nauk, 444:3 (2012), 250–252 | MR | Zbl

[14] Aliev Z., Cent. Eur. J. Math., 8:2 (2010), 378–388 | DOI | MR | Zbl