Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of force evolutionary billiards is discovered that realizes important integrable Hamiltonian systems on all regular isoenergy 3-surfaces simultaneously, i.e., on the phase 4-space. It is proved that the well-known Euler and Lagrange integrable systems are billiard equivalent, although the degrees of their integrals are different (two and one).
Keywords: integrable system, billiard, billiard book, Liouville equivalence, Fomenko–Zieschang invariant, evolutionary force billiards, rigid body dynamics.
@article{DANMA_2021_496_a0,
     author = {V. V. Vedyushkina and A. T. Fomenko},
     title = {Force evolutionary billiards and billiard equivalence of the {Euler} and {Lagrange} cases},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
AU  - A. T. Fomenko
TI  - Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 5
EP  - 9
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/
LA  - ru
ID  - DANMA_2021_496_a0
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%A A. T. Fomenko
%T Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 5-9
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/
%G ru
%F DANMA_2021_496_a0
V. V. Vedyushkina; A. T. Fomenko. Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 5-9. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/

[1] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999, 444 pp.

[2] Kibkalo V.A., Matem. sb., 210:5 (2019), 3–40 | DOI | MR | Zbl

[3] Kibkalo V., Topol. Appl., 275 (2020), 107028 | DOI | MR | Zbl

[4] Vedyushkina V.V., Fomenko A.T., Izv. RAN. Seriya matem., 81:4 (2017), 20–67 | DOI | MR | Zbl

[5] Vedyushkina V.V., Fomenko A.T., DAN, 486:2 (2019), 151–155 | MR | Zbl

[6] Vedyushkina V.V., Fomenko A.T., Izv. RAN. Seriya matem., 83:6 (2019), 63–103 | DOI | MR | Zbl

[7] Belozerov G.V., Matem. sb., 211:11 (2020), 3–40 | DOI | MR | Zbl

[8] Vedyushkina V.V., Kharcheva I.S., Matem. sb., 209:12 (2018), 17–56 | DOI | MR | Zbl

[9] Vedyushkina V.V., Matem. sb., 210:3 (2019), 17–74 | DOI | MR | Zbl

[10] Bolsinov A., Guglielmi L., Kudryavtseva E., Phil. Trans. R. Soc. A, 376 (2018), 20170424 | DOI | MR | Zbl

[11] Kobtsev I.F., Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 2, 27–33 | MR | Zbl

[12] Kobtsev I.F., Matem. sb., 211:7 (2020), 93–120 | DOI | MR | Zbl

[13] Pustovoitov S.E., Fund. prikl. mat., 22:6 (2019), 201–225 | MR

[14] Kozlov V.V., Treschev D.V., Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991

[15] Kharcheva I.S., Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 4, 12–22 | MR | Zbl