Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 5-9

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of force evolutionary billiards is discovered that realizes important integrable Hamiltonian systems on all regular isoenergy 3-surfaces simultaneously, i.e., on the phase 4-space. It is proved that the well-known Euler and Lagrange integrable systems are billiard equivalent, although the degrees of their integrals are different (two and one).
Keywords: integrable system, billiard, billiard book, Liouville equivalence, Fomenko–Zieschang invariant, evolutionary force billiards, rigid body dynamics.
@article{DANMA_2021_496_a0,
     author = {V. V. Vedyushkina and A. T. Fomenko},
     title = {Force evolutionary billiards and billiard equivalence of the {Euler} and {Lagrange} cases},
     journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {496},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/}
}
TY  - JOUR
AU  - V. V. Vedyushkina
AU  - A. T. Fomenko
TI  - Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases
JO  - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 5
EP  - 9
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/
LA  - ru
ID  - DANMA_2021_496_a0
ER  - 
%0 Journal Article
%A V. V. Vedyushkina
%A A. T. Fomenko
%T Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases
%J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ
%D 2021
%P 5-9
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/
%G ru
%F DANMA_2021_496_a0
V. V. Vedyushkina; A. T. Fomenko. Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 5-9. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/