Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases
Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 5-9
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of force evolutionary billiards is discovered that realizes important integrable Hamiltonian systems on all regular isoenergy 3-surfaces simultaneously, i.e., on the phase 4-space. It is proved that the well-known Euler and Lagrange integrable systems are billiard equivalent, although the degrees of their integrals are different (two and one).
Keywords:
integrable system, billiard, billiard book, Liouville equivalence, Fomenko–Zieschang invariant, evolutionary force billiards, rigid body dynamics.
@article{DANMA_2021_496_a0,
author = {V. V. Vedyushkina and A. T. Fomenko},
title = {Force evolutionary billiards and billiard equivalence of the {Euler} and {Lagrange} cases},
journal = {Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleni\^a},
pages = {5--9},
publisher = {mathdoc},
volume = {496},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/}
}
TY - JOUR AU - V. V. Vedyushkina AU - A. T. Fomenko TI - Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases JO - Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ PY - 2021 SP - 5 EP - 9 VL - 496 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/ LA - ru ID - DANMA_2021_496_a0 ER -
%0 Journal Article %A V. V. Vedyushkina %A A. T. Fomenko %T Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases %J Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ %D 2021 %P 5-9 %V 496 %I mathdoc %U http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/ %G ru %F DANMA_2021_496_a0
V. V. Vedyushkina; A. T. Fomenko. Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases. Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, Tome 496 (2021), pp. 5-9. http://geodesic.mathdoc.fr/item/DANMA_2021_496_a0/